1,086 research outputs found
Design of a Broadband Amplifier for High Speed Applications
This paper provides comprehensive insight into the design approach followed for an amplifier dedicated to high speed base band signals. To demonstrate the methodology, an amplifier consisting of nine PHEMT cascode cells within a distributed amplifier topology was designed. The resulting frequency response is 40 GHz at the 3-dB point, and the output voltage for a 43 Gbps eye diagram is 7.3 Vpp at the chip terminal
Assessing Sandhill Crane Roosting Habitat along the Platte River, Nebraska
Each spring approximately 500,000 sandhill cranes and some endangered whooping cranes use the Central Platte River Valley in Nebraska as a staging habitat during their migration north to breeding and nesting grounds in Canada, Alaska, and the Siberian Arctic. Over the last century changes in the flow of the river have altered the river channels and the distribution of roost sites. USGS researchers studied linkages between water flow, sediment supply, channel morphology, and preferred sites for crane roosting. These results are useful for estimating crane populations and for providing resource managers with techniques to understand crane habitats
Tumor-homing cytotoxic human induced neural stem cells for cancer therapy
Engineered neural stem cells (NSCs) are a promising approach to treating glioblastoma (GBM). The ideal NSC drug carrier for clinical use should be easily isolated and autologous to avoid immune rejection. We transdifferentiated (TD) human fibroblasts into tumor-homing early-stage induced NSCs (h-iNSCTE), engineered them to express optical reporters and different therapeutic gene products, and assessed the tumor-homing migration and therapeutic efficacy of cytotoxic h-iNSCTE in patient-derived GBM models of surgical and nonsurgical disease. Molecular and functional analysis revealed that our single-factor SOX2 TD strategy converted human skin fibroblasts into h-iNSCTE that were nestin+ and expressed pathways associated with tumor-homing migration in 4 days. Time-lapse motion analysis showed that h-iNSCTE rapidly migrated to human GBM cells and penetrated human GBM spheroids, a process inhibited by blockade of CXCR4. Serial imaging showed that h-iNSCTE delivery of the proapoptotic agent tumor necrosis factor-A-related apoptosis-inducing ligand (TRAIL) reduced the size of solid human GBM xenografts 250-fold in 3 weeks and prolonged median survival from 22 to 49 days. Additionally, h-iNSCTE thymidine kinase/ganciclovir enzyme/prodrug therapy (h-iNSCTE-TK) reduced the size of patient-derived GBM xenografts 20-fold and extended survival from 32 to 62 days. Mimicking clinical NSC therapy, h-iNSCTE-TK therapy delivered into the postoperative surgical resection cavity delayed the regrowth of residual GBMs threefold and prolonged survival from 46 to 60 days. These results suggest that TD of human skin into h-iNSCTE is a platform for creating tumor-homing cytotoxic cell therapies for cancer, where the potential to avoid carrier rejection could maximize treatment durability in human trials
Purpose and enactment in job design: An empirical examination of the processes through which job characteristics have their effects
Job characteristics are linked with health, safety, well-being and other performance outcomes. Job characteristics are usually assessed by their presence or absence, which gives no indication of the specific purposes for which workers might use some job characteristics. We focused on job control and social support as two job characteristics embedded in the well-known Demand-Control-Support model (Karasek & Theorell, 1990). In Study 1, using an experience sampling methodology (N = 67) and a cross-sectional survey methodology (N = 299), we found that relationships between the execution of job control or the elicitation of social support and a range of other variables depended on the purposes for which job control was executed or social support elicited. In Study 2 (N = 28), we found that it may be feasible to improve aspects of well-being and performance through training workers on how to use job control or social support for specific purposes
Impact of predicted precipitation scenarios on multitrophic interactions
1. Predicted changes in the frequency and intensity of extreme rainfall events in the UK have the potential to disrupt terrestrial ecosystem function. However, responses of different trophic levels to these changes in rainfall patterns, and the underlying mechanisms, are not well characterised.
2. This study aimed to investigate how changes in both the quantity and frequency of rainfall events will affect the outcome of interactions between plants, insect herbivores (above- and below- ground) and natural enemies.
3. Hordeum vulgare L. plants were grown in controlled conditions and in the field, and subjected to three precipitation scenarios: ambient (based on a local 10 year average rainfall); continuous drought (40% reduction compared to ambient); drought/ deluge (40% reduction compared to ambient at a reduced frequency). The effects of these watering regimes and wireworm (Agriotes species) root herbivory on the performance of the plants, aphid herbivores above-ground (Sitobion avenae, Metapolophium dirhodum and Rhopalosiphum padi), and natural enemies of aphids including ladybirds (Harmonia axyridis) were assessed from measurements of plant growth, insect abundance and mass, and assays of feeding behaviour.
4. Continuous drought decreased plant biomass, whereas reducing the frequency of watering events did not affect plant biomass but did alter plant chemical composition. In controlled conditions, continuous drought ameliorated the negative impact of wireworms on plant biomass.
5. Compared to the ambient treatment, aphid mass was increased by 15% when feeding on plants subjected to drought/ deluge; and ladybirds were 66% heavier when feeding on these aphids but this did not affect ladybird prey choice. In field conditions, wireworms feeding below-ground reduced the number of shoot-feeding aphids under ambient and continuous drought conditions but not under drought/ deluge.
6. Predicted changes in both the frequency and intensity of precipitation events under climate change have the potential to limit plant growth, but reduce wireworm herbivory, while simultaneously promoting above-ground aphid numbers and mass, with these effects transferring to the third trophic level. Understanding the effect of future changes in precipitation on species interactions is critical for determining their potential impact on ecosystem functioning and constructing accurate predictions under global change scenarios
Active region formation through the negative effective magnetic pressure instability
The negative effective magnetic pressure instability operates on scales
encompassing many turbulent eddies and is here discussed in connection with the
formation of active regions near the surface layers of the Sun. This
instability is related to the negative contribution of turbulence to the mean
magnetic pressure that causes the formation of large-scale magnetic structures.
For an isothermal layer, direct numerical simulations and mean-field
simulations of this phenomenon are shown to agree in many details in that their
onset occurs at the same depth. This depth increases with increasing field
strength, such that the maximum growth rate of this instability is independent
of the field strength, provided the magnetic structures are fully contained
within the domain. A linear stability analysis is shown to support this
finding. The instability also leads to a redistribution of turbulent intensity
and gas pressure that could provide direct observational signatures.Comment: 19 pages, 10 figures, submitted to Solar Physic
- …