82 research outputs found

    Differential attenuation of Marek's disease virus-induced tumours and late-Marek's disease virus-induced immunosuppression

    Get PDF
    Marek's disease virus (MDV) is a herpesvirus that induces lymphoma and a variety of non-neoplastic syndromes in chickens. Furthermore, very virulent plus (vv+) MDVs induce a form of immunosuppression (late-MDV-IS) that might involve both neoplastic and non-neoplastic mechanisms. The objective of this study was to evaluate whether the attenuation of MDV-induced tumours and late-MDV-IS occurs simultaneously or can be dissociated. The immunosuppressive ability of three viruses derived from vv+ MDV strain 686 (wild-type 686, the somewhat attenuated molecular clone 686-BAC, and the nononcogenic molecular clone lacking the two copies of the oncogene meq 686-BACΔMEQ) was evaluated. Late-MDV-IS was evaluated indirectly by assessing the negative effect of MDV strains on the protection conferred by infectious laryngotracheitis (ILT) vaccines. Our results showed that the ability to induce late-MDV-IS was attenuated before the ability to induce tumours. Strain 686 induced both tumours and late-MDV-IS, 686-BAC induced tumours but did not induce late-MDV-IS and 686-BACΔMEQ did not induce either tumours or late-MDV-IS. Further comparison of strains 686 and 686-BAC revealed that strain 686 reduced the humoral immune responses to ILTV (1132 vs 2167) more severely, showed higher levels of meq transcripts (2.1E+09 vs 4.98E+8) and higher expression of MDV microRNAs (mdv1-miR-M4-5p and mdv1-miR-M2-3p) in the spleen, and further reduced the percentage of CD45+-MHC-I+splenocytes (13 vs32 %) compared to molecular clone 686-BAC. This study suggests that the immunosuppressive ability of MDV might follow a continuous spectrum and only the most virulent MDVs can overcome a certain threshold level and induce clinical MDV-IS in the ILT model

    Validation of ELISA-based detection of L. monocytogenes and E. coli O157:H7 in fresh cut vegetables

    Get PDF
    Innovative diagnostic methods were developed for the detection and quantification of Listeria monocytogenes and Escherichia coli O157:H7 in minimally processed fresh cut fruits and vegetables. The aim of the present study was to validate the technical efficiency of these methods and evaluate their efficacy and viability for routine analysis. To this purpose, ready-to-eat fresh fruits and vegetables were collected throughout the production chain. A multidisciplinary approach, including a newly developed ELISA method compared to ISO procedures, was applied to detect the pathogenic bacteria after harvesting, processing and shelf-life. Results obtained exhibited the technical efficiency of the developed methods showing similar sensitivity, specificity, negative predictive values and negative likelihood ratios

    Double-Positive CD21+CD27+ B Cells Are Highly Proliferating Memory Cells and Their Distribution Differs in Mucosal and Peripheral Tissues

    Get PDF
    Several B-cell defects arise in HIV infected patients, particularly in patients with chronic infection and high viral load. Loss of memory B cells (CD27(+) B cells) in peripheral blood and lymphoid tissues is one of the major B cell dysfunctions in HIV and simian immunodeficiency virus (SIV) infection. Despite several studies, definitive identification of memory B cells based on CD27 surface expression has not been described. Similarly, the rates of cell turnover in different B cell subpopulation from lymphoid and mucosal tissues have not been well documented. In this study, we demonstrate the presence of memory B cell populations and define their distribution, frequency and immunophenotype with regards to activation, proliferation, maturation, and antibody production in normal rhesus macaques from different lymphoid tissues.Thirteen healthy, uninfected rhesus macaques were selected for this study. CD20(+) B cells were isolated from peripheral blood and sorted based on CD27 and CD21 surface markers to define memory B cell population. All the B cell subpopulation was further characterized phenotypically and their cell turnover rates were evaluated in vivo following bromodeoxyuridine (BrdU) inoculation. Double positive (DP) CD21(+)CD27(+) B cells in both peripheral and lymphoid tissues are memory B cells, able to produce antibody by polyclonal activation, and without T cell help. Peripheral and lymphoid DP CD21(+)CD27(+) B cells were also able to become activated and proliferate at higher rates than other B cell subpopulations. Increased turnover of tonsillar memory B cells were identified compared to other tissues examined.We suggest that this DP memory B cells play a major role in the immune system and their function and proliferation might have an important role in HIV/SIV mediated B cell dysregulation and pathogenesis

    PrP(Sc)-specific antibodies with the ability to immunodetect prion oligomers.

    Get PDF
    The development of antibodies with binding capacity towards soluble oligomeric forms of PrPSc recognised in the aggregation process in early stage of the disease would be of paramount importance in diagnosing prion diseases before extensive neuropathology has ensued. As blood transfusion appears to be efficient in the transmission of the infectious prion agent, there is an urgent need to develop reagents that would specifically recognize oligomeric forms of the abnormally folded prion protein, PrPSc.To that end, we show that anti-PrP monoclonal antibodies (called PRIOC mAbs) derived from mice immunised with native PrP-coated microbeads are able to immunodetect oligomers/multimers of PrPSc. Oligomer-specific immunoreactivity displayed by these PRIOC mAbs was demonstrated as large aggregates of immunoreactive deposits in prion-permissive neuroblastoma cell lines but not in equivalent non-infected or prn-p(0/0) cell lines. In contrast, an anti-monomer PrP antibody displayed diffuse immunoreactivity restricted to the cell membrane. Furthermore, our PRIOC mAbs did not display any binding with monomeric recombinant and cellular prion proteins but strongly detected PrPSc oligomers as shown by a newly developed sensitive and specific ELISA. Finally, PrioC antibodies were also able to bind soluble oligomers formed of Aβ and α-synuclein. These findings demonstrate the potential use of anti-prion antibodies that bind PrPSc oligomers, recognised in early stage of the disease, for the diagnosis of prion diseases in blood and other body fluids

    Specific Binding of the Pathogenic Prion Isoform: Development and Characterization of a Humanized Single-Chain Variable Antibody Fragment

    Get PDF
    Murine monoclonal antibody V5B2 which specifically recognizes the pathogenic form of the prion protein represents a potentially valuable tool in diagnostics or therapy of prion diseases. As murine antibodies elicit immune response in human, only modified forms can be used for therapeutic applications. We humanized a single-chain V5B2 antibody using variable domain resurfacing approach guided by computer modelling. Design based on sequence alignments and computer modelling resulted in a humanized version bearing 13 mutations compared to initial murine scFv. The humanized scFv was expressed in a dedicated bacterial system and purified by metal-affinity chromatography. Unaltered binding affinity to the original antigen was demonstrated by ELISA and maintained binding specificity was proved by Western blotting and immunohistochemistry. Since monoclonal antibodies against prion protein can antagonize prion propagation, humanized scFv specific for the pathogenic form of the prion protein might become a potential therapeutic reagent

    High-throughput screening of monoclonal antibodies against plant cell wall glycans by hierarchical clustering of their carbohydrate microarray binding profiles

    Get PDF
    Antibody-producing hybridoma cell lines were created following immunisation with a crude extract of cell wall polymers from the plant Arabidopsis thaliana. In order to rapidly screen the specificities of individual monoclonal antibodies (mAbs), their binding to microarrays containing 50 cell wall glycans immobilized on nitrocellulose was assessed. Hierarchical clustering of microarray binding profiles from newly produced mAbs, together with the profiles for mAbs with previously defined specificities allowed the rapid assignments of mAb binding to antigen classes. mAb specificities were further investigated using subsequent immunochemical and biochemical analyses and two novel mAbs are described in detail. mAb LM13 binds to an arabinanase-sensitive pectic epitope and mAb LM14, binds to an epitope occurring on arabinogalactan-proteins. Both mAbs display novel patterns of recognition of cell walls in plant materials

    Prion protein-specific antibodies that detect multiple TSE agents with high sensitivity

    Get PDF
    This paper describes the generation, characterisation and potential applications of a panel of novel anti-prion protein monoclonal antibodies (mAbs). The mAbs were generated by immunising PRNP null mice, using a variety of regimes, with a truncated form of recombinant ovine prion protein spanning residues 94–233. Epitopes of specific antibodies were mapped using solid-phase Pepscan analysis and clustered to four distinct regions within the PrP molecule. We have demonstrated the utility of these antibodies by use of Western blotting and immunohistochemistry in tissues from a range of different species affected by transmissible spongiform encephalopathy (TSE). In comparative tests against extensively-used and widely-published, commercially available antibodies, similar or improved results can be obtained using these new mAbs, specifically in terms of sensitivity of detection. Since many of these antibodies recognise native PrPC, they could also be applied to a broad range of immunoassays such as flow cytometry, DELFIA analysis or immunoprecipitation. We are using these reagents to increase our understanding of TSE pathogenesis and for use in potential diagnostic screening assays

    31st Annual Meeting and Associated Programs of the Society for Immunotherapy of Cancer (SITC 2016) : part two

    Get PDF
    Background The immunological escape of tumors represents one of the main ob- stacles to the treatment of malignancies. The blockade of PD-1 or CTLA-4 receptors represented a milestone in the history of immunotherapy. However, immune checkpoint inhibitors seem to be effective in specific cohorts of patients. It has been proposed that their efficacy relies on the presence of an immunological response. Thus, we hypothesized that disruption of the PD-L1/PD-1 axis would synergize with our oncolytic vaccine platform PeptiCRAd. Methods We used murine B16OVA in vivo tumor models and flow cytometry analysis to investigate the immunological background. Results First, we found that high-burden B16OVA tumors were refractory to combination immunotherapy. However, with a more aggressive schedule, tumors with a lower burden were more susceptible to the combination of PeptiCRAd and PD-L1 blockade. The therapy signifi- cantly increased the median survival of mice (Fig. 7). Interestingly, the reduced growth of contralaterally injected B16F10 cells sug- gested the presence of a long lasting immunological memory also against non-targeted antigens. Concerning the functional state of tumor infiltrating lymphocytes (TILs), we found that all the immune therapies would enhance the percentage of activated (PD-1pos TIM- 3neg) T lymphocytes and reduce the amount of exhausted (PD-1pos TIM-3pos) cells compared to placebo. As expected, we found that PeptiCRAd monotherapy could increase the number of antigen spe- cific CD8+ T cells compared to other treatments. However, only the combination with PD-L1 blockade could significantly increase the ra- tio between activated and exhausted pentamer positive cells (p= 0.0058), suggesting that by disrupting the PD-1/PD-L1 axis we could decrease the amount of dysfunctional antigen specific T cells. We ob- served that the anatomical location deeply influenced the state of CD4+ and CD8+ T lymphocytes. In fact, TIM-3 expression was in- creased by 2 fold on TILs compared to splenic and lymphoid T cells. In the CD8+ compartment, the expression of PD-1 on the surface seemed to be restricted to the tumor micro-environment, while CD4 + T cells had a high expression of PD-1 also in lymphoid organs. Interestingly, we found that the levels of PD-1 were significantly higher on CD8+ T cells than on CD4+ T cells into the tumor micro- environment (p < 0.0001). Conclusions In conclusion, we demonstrated that the efficacy of immune check- point inhibitors might be strongly enhanced by their combination with cancer vaccines. PeptiCRAd was able to increase the number of antigen-specific T cells and PD-L1 blockade prevented their exhaus- tion, resulting in long-lasting immunological memory and increased median survival
    corecore