49 research outputs found
Future pathways for decarbonization and energy efficiency of ports: Modelling and optimization as sustainable energy hubs
The increasing energy demand in harbour areas, coupled with the need to reduce pollutant emissions, has led to the development of renewable energy-based polygeneration systems to face the carbon footprint of ports and ships at berth. In this way, in the coming years, ports can be converted into modern energy hubs.
From this point of view, this paper presents a new dynamic simulation model for assessing and optimizing the energy and economic impact of ports. Here, energy systems and renewable sources can be designed to be connected to national electricity and natural gas grids and can include also alternative fuels (hydrogen, biomethane, etc.) and thermal energy networks, as well as different biomass fluxes (to be exploited for energy aims). Energy availability/demands of near towns and port buildings/infrastructures, as well as on-shore power supply are also included in the dynamic assessments. Hourly weather data and different prices for all the considered energy carriers are taken into account hour by hour. A multi-objective optimization approach is also implemented in the model considering energy and economic indexes to be optimized. The whole model is implemented in a computer tool written in MATLAB.
For showing the capability of the developed model, a novel case study referred to the port of Naples (South-Italy) is presented. Here, several renewable energy sources are considered, including an anaerobic biodigester for producing biogas from the organic waste of docked cruise ships. A combined heat and power system (fed by biogas) is implemented in the port energy hub also for supplying absorption chillers. PV panels, and marine power generators are also included. In the conducted analysis, optimization targets are the maximization of system self-consumption and self-sufficiency as well as the minimum simple payback period. The proposed system can effectively contribute to the decarbonization of the port energy demand and reduce harmful pollutant emissions. Results showed that very high rate of renewable energy produced on-site can be exploited (up to 84%) by the considered port facilities, ensuring increasing independency from utility power grid (self-sufficiency index up to 40%). By the obtained results and through the developed simulation/optimization tool, novel design and operating criteria can be achieved for future port energy hubs featured by renewables and bi-directional energy exchange between ships and port
Audio-Vestibular Alterations During the Phases of the Menstrual Cycle in Patients with Cochlear Implant
Background: The female hormones fluctuations in woman’s life play a dominant role in homeostasis of the body and can influence the psycho-neurological processes in different body systems. In particular, in the auditory system seems that hormonal alterations during the menstrual cycle can compromise the homeostasis of the labyrinthine fluids altering balance and/or hearing.
Aims/Objectives: Our study aims to verify if hormonal changes during different menstrual phases may have an influence, in females with cochlear implants, on the trend of auditory and vestibular performances. Materials and methods: Tonal, speech audiometry, vestibular examination and a measure of cochlear implants electrodes impedances were realized in the follicular and luteal phases on a group of eight women who are at a fertile age, affected by profound sensorineural form of hearing loss and carrying a monolateral cochlear implant.
Results: Audio-vestibular alterations, as well as, an increase of impedance electrodes are reported in the luteal phase.
Conclusions: Our work suggests that audio-vestibular alterations are related to the different phases of the menstrual cycle with consequent variation also of the performances of the implant. It is very important to keep in mind this aspect to avoid negative results during rehabilitation
Influence of Antisynthetase Antibodies Specificities on Antisynthetase Syndrome Clinical Spectrum TimeCourse
Introduction: Increased cardiovascular (CV) morbidity and mortality is observed in inflammatory joint diseases (IJDs) such as rheumatoid arthritis, ankylosing spondylitis, and psoriatic arthritis. However, the management of CV disease in these conditions is far from being well established.Areas covered: This review summarizes the main epidemiologic, pathophysiological, and clinical risk factors of CV disease associated with IJDs. Less common aspects on early diagnosis and risk stratification of the CV disease in these conditions are also discussed. In Europe, the most commonly used risk algorithm in patients with IJDs is the modified SCORE index based on the revised recommendations proposed by the EULAR task force in 2017.Expert opinion: Early identification of IJD patients at high risk of CV disease is essential. It should include the use of complementary noninvasive imaging techniques. A multidisciplinary approach aimed to improve heart-healthy habits, including strict control of classic CV risk factors is crucial. Adequate management of the underlying IJD is also of main importance since the reduction of disease activity decreases the risk of CV events. Non-steroidal anti-inflammatory drugs may have a lesser harmful effect in IJD than in the general population, due to their anti-inflammatory effects along with other potential beneficial effects.This research was partially funded by FOREUM—Foundation for Research in Rheumatolog
Infected pancreatic necrosis: outcomes and clinical predictors of mortality. A post hoc analysis of the MANCTRA-1 international study
: The identification of high-risk patients in the early stages of infected pancreatic necrosis (IPN) is critical, because it could help the clinicians to adopt more effective management strategies. We conducted a post hoc analysis of the MANCTRA-1 international study to assess the association between clinical risk factors and mortality among adult patients with IPN. Univariable and multivariable logistic regression models were used to identify prognostic factors of mortality. We identified 247 consecutive patients with IPN hospitalised between January 2019 and December 2020. History of uncontrolled arterial hypertension (p = 0.032; 95% CI 1.135-15.882; aOR 4.245), qSOFA (p = 0.005; 95% CI 1.359-5.879; aOR 2.828), renal failure (p = 0.022; 95% CI 1.138-5.442; aOR 2.489), and haemodynamic failure (p = 0.018; 95% CI 1.184-5.978; aOR 2.661), were identified as independent predictors of mortality in IPN patients. Cholangitis (p = 0.003; 95% CI 1.598-9.930; aOR 3.983), abdominal compartment syndrome (p = 0.032; 95% CI 1.090-6.967; aOR 2.735), and gastrointestinal/intra-abdominal bleeding (p = 0.009; 95% CI 1.286-5.712; aOR 2.710) were independently associated with the risk of mortality. Upfront open surgical necrosectomy was strongly associated with the risk of mortality (p < 0.001; 95% CI 1.912-7.442; aOR 3.772), whereas endoscopic drainage of pancreatic necrosis (p = 0.018; 95% CI 0.138-0.834; aOR 0.339) and enteral nutrition (p = 0.003; 95% CI 0.143-0.716; aOR 0.320) were found as protective factors. Organ failure, acute cholangitis, and upfront open surgical necrosectomy were the most significant predictors of mortality. Our study confirmed that, even in a subgroup of particularly ill patients such as those with IPN, upfront open surgery should be avoided as much as possible. Study protocol registered in ClinicalTrials.Gov (I.D. Number NCT04747990)
The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance
INTRODUCTION
Investment in Africa over the past year with regard to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing has led to a massive increase in the number of sequences, which, to date, exceeds 100,000 sequences generated to track the pandemic on the continent. These sequences have profoundly affected how public health officials in Africa have navigated the COVID-19 pandemic.
RATIONALE
We demonstrate how the first 100,000 SARS-CoV-2 sequences from Africa have helped monitor the epidemic on the continent, how genomic surveillance expanded over the course of the pandemic, and how we adapted our sequencing methods to deal with an evolving virus. Finally, we also examine how viral lineages have spread across the continent in a phylogeographic framework to gain insights into the underlying temporal and spatial transmission dynamics for several variants of concern (VOCs).
RESULTS
Our results indicate that the number of countries in Africa that can sequence the virus within their own borders is growing and that this is coupled with a shorter turnaround time from the time of sampling to sequence submission. Ongoing evolution necessitated the continual updating of primer sets, and, as a result, eight primer sets were designed in tandem with viral evolution and used to ensure effective sequencing of the virus. The pandemic unfolded through multiple waves of infection that were each driven by distinct genetic lineages, with B.1-like ancestral strains associated with the first pandemic wave of infections in 2020. Successive waves on the continent were fueled by different VOCs, with Alpha and Beta cocirculating in distinct spatial patterns during the second wave and Delta and Omicron affecting the whole continent during the third and fourth waves, respectively. Phylogeographic reconstruction points toward distinct differences in viral importation and exportation patterns associated with the Alpha, Beta, Delta, and Omicron variants and subvariants, when considering both Africa versus the rest of the world and viral dissemination within the continent. Our epidemiological and phylogenetic inferences therefore underscore the heterogeneous nature of the pandemic on the continent and highlight key insights and challenges, for instance, recognizing the limitations of low testing proportions. We also highlight the early warning capacity that genomic surveillance in Africa has had for the rest of the world with the detection of new lineages and variants, the most recent being the characterization of various Omicron subvariants.
CONCLUSION
Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve. This is important not only to help combat SARS-CoV-2 on the continent but also because it can be used as a platform to help address the many emerging and reemerging infectious disease threats in Africa. In particular, capacity building for local sequencing within countries or within the continent should be prioritized because this is generally associated with shorter turnaround times, providing the most benefit to local public health authorities tasked with pandemic response and mitigation and allowing for the fastest reaction to localized outbreaks. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century