210 research outputs found

    Valence Instability of YbCu2_2Si2_2 through its quantum critical point

    Get PDF
    We report Resonant inelastic x-ray scattering measurements (RIXS) in YbCu2_2Si2_2 at the Yb L3_{3} edge under high pressure (up to 22 GPa) and at low temperatures (down to 7 K) with emphasis on the vicinity of the transition to a magnetic ordered state. We find a continuous valence change towards the trivalent state with increasing pressure but with a pronounced change of slope close to the critical pressure. Even at 22 GPa the Yb+3^{+3} state is not fully achieved. The pressure where this feature is observed decreases as the temperature is reduced to 9 GPa at 7K, a value close to the critical pressure (\itshape{p\normalfont{c_c}}\normalfont \approx 7.5 GPa) where magnetic order occurs. The decrease in the valence with decreasing temperature previously reported at ambient pressure is confirmed and is found to be enhanced at higher pressures. We also compare the f electron occupancy between YbCu2_2Si2_2 and its Ce-counterpart, CeCu2_2Si2_2

    First-principles calculation of x-ray dichroic spectra within the full-potential linearized augmented planewave method: An implementation into the Wien2k code

    Full text link
    X-ray absorption and its dependence on the polarization of light is a powerful tool to investigate the orbital and spin moments of magnetic materials and their orientation relative to crystalline axes. Here, we present a program for the calculation of dichroic spectra from first principles. We have implemented the calculation of x-ray absorption spectra for left and right circularly polarized light into the Wien2k code. In this package, spin-density functional theory is applied in an all-electron scheme that allows to describe both core and valence electrons on the same footing. The matrix elements, which define the dependence of the photo absorption cross section on the polarization of light and on the sample magnetization, are computed within the dipole approximation. Results are presented for the L2,3 and M4,5 egdes of CeFe2 and compared to experiments

    Structural dichroism in the antiferromagnetic insulating phase of V_2O_3

    Full text link
    We performed near-edge x-ray absorption spectroscopy (XANES) at V K edge in the antiferromagnetic insulating (AFI) phase of a 2.8% Cr-doped V_2O_3 single crystal. Linear dichroism of several percent is measured in the hexagonal plane and found to be in good agreement with ab-initio calculations based on multiple scattering theory. This experiment definitively proves the structural origin of the signal and therefore solves a controversy raised by previous interpretations of the same dichroism as non-reciprocal. It also calls for a further investigation of the role of the magnetoelectric annealing procedure in cooling to the AFI phase.Comment: 4 pages 3 figures. To be published in Phys. Rev. B (2005

    Electric field control of multiferroic domains in Ni3_3V2_2O8_8 imaged by X-ray polarization enhanced topography

    Full text link
    The magnetic structure of multiferroic Ni3_3V2_2O8_8 has been investigated using non-resonant X-ray magnetic scattering. Incident circularly polarized X-rays combined with full polarization analysis of the scattered beam is shown to yield high sensitivity to the components of the cycloidal magnetic order, including their relative phases. New information on the magnetic structure in the ferroelectric phase is obtained, where it is found that the magnetic moments on the "cross-tie" sites are quenched relative to those on the "spine" sites. This implies that the onset of ferroelectricity is associated mainly with spine site magnetic order. We also demonstrate that our technique enables the imaging of multiferroic domains through polarization enhanced topography. This approach is used to image the domains as the sample is cycled by an electric field through its hysteresis loop, revealing the gradual switching of domains without nucleation.Comment: 9 pages, 6 figure

    Disentangling multipole resonances through a full x-ray polarization analysis

    Full text link
    Complete polarization analysis applied to resonant x-ray scattering at the Cr K-edge in K2CrO4 shows that incident linearly polarized x-rays can be converted into circularly polarized x-rays by diffraction at the Cr pre-edge (E = 5994 eV). The physical mechanism behind this phenomenon is a subtle interference effect between purely dipole (E1-E1) and purely quadrupole (E2-E2) transitions, leading to a phase shift between the respective scattering amplitudes. This effect may be exploited to disentangle two close-lying resonances that appear as a single peak in a conventional energy scan, in this way allowing to single out and identify the different multipole order parameters involved.Comment: 6 pages, 6 figure
    corecore