230 research outputs found

    Analysis of pregnancy-associated plasma protein a production in human adult cardiac progenitor cells

    Get PDF
    IGF-binding proteins (IGFBPs) and their proteases regulate IGFs bioavailability in multiple tissues. Pregnancy-associated plasma protein A (PAPP-A) is a protease acting by cleaving IGFBP2, 4, and 5, regulating local bioavailability of IGFs. We have previously shown that IGFs and IGFBPs are produced by human adult cardiac progenitor cells (haCPCs) and that IGF-1 exerts paracrine therapeutic effects in cardiac cell therapy with CPCs. Using immunofluorescence and enzyme immunoassays, we firstly report that PAPP-A is produced and secreted in surprisingly high amounts by haCPCs. In particular, the homodimeric, enzymatically active, PAPP-A is secreted in relevant concentrations in haCPC-conditioned media, while the enzymatically inactive PAPPA/proMBP complex is not detectable in the same media. Furthermore, we show that both homodimeric PAPP-A and proMBP can be detected as cell associated, suggesting that the previously described complex formation at the cell surface does not occur easily, thus positively affecting IGF signalling. Therefore, our results strongly support the importance of PAPP-A for the IGFs/IGFBPs/PAPP-A axis in CPCs biology

    Searching for novel carbonic anhydrase inhibitors: from virtual screening to the lab bench

    Get PDF
    Carbonic Anhydrases (CAs) are zinc metalloenzymes that catalyze the reversible hydration of carbon dioxide to bicarbonate both in prokaryotes and eukaryotes. In this context, Computer Aided Drug Design strategies have emerged as powerful tools in the modern drug discovery paradigm. In particular, using ligand- and pharmacophore-based virtual screening approaches, we identified novel chemical entities with original chemotypes, that showed an interesting and selective inhibitory activity in nanomolar/low micromolar range toward CA I and CAII, isoforms. Herein, we present the hit-to-lead optimization process for these prototypes

    The Multifaceted Origin of Taurine Cattle Reflected by the Mitochondrial Genome

    Get PDF
    A Neolithic domestication of taurine cattle in the Fertile Crescent from local aurochsen (Bos primigenius) is generally accepted, but a genetic contribution from European aurochsen has been proposed. Here we performed a survey of a large number of taurine cattle mitochondrial DNA (mtDNA) control regions from numerous European breeds confirming the overall clustering within haplogroups (T1, T2 and T3) of Near Eastern ancestry, but also identifying eight mtDNAs (1.3%) that did not fit in haplogroup T. Sequencing of the entire mitochondrial genome showed that four mtDNAs formed a novel branch (haplogroup R) which, after the deep bifurcation that gave rise to the taurine and zebuine lineages, constitutes the earliest known split in the mtDNA phylogeny of B. primigenius. The remaining four mtDNAs were members of the recently discovered haplogroup Q. Phylogeographic data indicate that R mtDNAs were derived from female European aurochsen, possibly in the Italian Peninsula, and sporadically included in domestic herds. In contrast, the available data suggest that Q mtDNAs and T subclades were involved in the same Neolithic event of domestication in the Near East. Thus, the existence of novel (and rare) taurine haplogroups highlights a multifaceted genetic legacy from distinct B. primigenius populations. Taking into account that the maternally transmitted mtDNA tends to underestimate the extent of gene flow from European aurochsen, the detection of the R mtDNAs in autochthonous breeds, some of which are endangered, identifies an unexpected reservoir of genetic variation that should be carefully preserved

    Design and synthesis of bis-amide and hydrazide-containing derivatives of malonic acid as potential HIV-1 integrase inhibitors

    Get PDF
    HIV-1 integrase (IN) is an attractive and validated target for the development of novel therapeutics against AIDS. In the search for new IN inhibitors, we designed and synthesized three series of bis-amide and hydrazide-containing derivatives of malonic acid. We performed a docking study to investigate the potential interactions of the title compounds with essential amino acids on the IN active site

    Impact of momentum mismatch on 2D van der Waals tunnel field-effect transistors

    Get PDF
    We numerically investigate electron quantum transport in 2D van der Waals tunnel field-effect-transistors in the presence of lateral momentum mismatch induced by lattice mismatch or rotational misalignment between the two-dimensional layers. We show that a small momentum mismatch induces a threshold voltage shift without altering the subthreshold swing. On the contrary, a large momentum mismatch produces significant potential variations and ON-current reduction. Short-range scattering, such as that due to phonons or system edges, enables momentum variations, thus enhancing interlayer tunneling. The coupling of electrons with acoustic phonons is shown to increase the ON current without affecting the subthreshold swing. In the case of optical phonons, the ON-current increase is accompanied by a subthreshold swing degradation due to the inelastic nature of the scattering

    Mitochondrial and Y-chromosome diversity of the Tharus (Nepal): a reservoir of genetic variation

    Get PDF
    Background Central Asia and the Indian subcontinent represent an area considered as a source and a reservoir for human genetic diversity, with many markers taking root here, most of which are the ancestral state of eastern and western haplogroups, while others are local. Between these two regions, Terai (Nepal) is a pivotal passageway allowing, in different times, multiple population interactions, although because of its highly malarial environment, it was scarcely inhabited until a few decades ago, when malaria was eradicated. One of the oldest and the largest indigenous people of Terai is represented by the malaria resistant Tharus, whose gene pool could still retain traces of ancient complex interactions. Until now, however, investigations on their genetic structure have been scarce mainly identifying East Asian signatures. Results High-resolution analyses of mitochondrial-DNA (including 34 complete sequences) and Y-chromosome (67 SNPs and 12 STRs) variations carried out in 173 Tharus (two groups from Central and one from Eastern Terai), and 104 Indians (Hindus from Terai and New Delhi and tribals from Andhra Pradesh) allowed the identification of three principal components: East Asian, West Eurasian and Indian, the last including both local and inter-regional sub-components, at least for the Y chromosome. Conclusion Although remarkable quantitative and qualitative differences appear among the various population groups and also between sexes within the same group, many mitochondrial-DNA and Y-chromosome lineages are shared or derived from ancient Indian haplogroups, thus revealing a deep shared ancestry between Tharus and Indians. Interestingly, the local Y-chromosome Indian component observed in the Andhra-Pradesh tribals is present in all Tharu groups, whereas the inter-regional component strongly prevails in the two Hindu samples and other Nepalese populations. The complete sequencing of mtDNAs from unresolved haplogroups also provided informative markers that greatly improved the mtDNA phylogeny and allowed the identification of ancient relationships between Tharus and Malaysia, the Andaman Islands and Japan as well as between India and North and East Africa. Overall, this study gives a paradigmatic example of the importance of genetic isolates in revealing variants not easily detectable in the general population

    Adipokines as Possible New Predictors of Cardiovascular Diseases: A Case Control Study

    Get PDF
    Background and Aims. The secretion of several adipocytokines, such as adiponectin, retinol-binding protein 4 (RBP4), adipocyte fatty acid binding protein (aFABP), and visfatin, is altered in subjects with abdominal adiposity; these endocrine alterations could contribute to increased cardiovascular risk. The aim of the study was to assess the relationship among adiponectin, RBP4, aFABP, and visfatin, and incident cardiovascular disease. Methods and Results. A case-control study, nested within a prospective cohort, on 2945 subjects enrolled for a diabetes screening program was performed. We studied 18 patients with incident fatal or nonfatal IHD (Ischemic Heart Disease) or CVD (Cerebrovascular Disease), compared with 18 matched control subjects. Circulating adiponectin levels were significantly lower in cases of IHD with respect to controls. Circulating RBP4 levels were significantly increased in CVD and decreased in IHD with respect to controls. Circulating aFABP4 levels were significantly increased in CVD, while no difference was associated with IHD. Circulating visfatin levels were significantly lower in cases of both CVD and IHD with respect to controls, while no difference was associated with CVD. Conclusions. The present study confirms that low adiponectin is associated with increased incidents of IHD, but not CVD, and suggests, for the first time, a major effect of visfatin, aFABP, and RBP4 in the development of cardiovascular disease

    Superconducting proximity effect in interacting quantum dots revealed by shot noise

    Full text link
    We study the full counting statistics of charge transport through a quantum dot tunnel-coupled to one normal and one superconducting lead with a large superconducting gap. As function of the level detuning, there is a crossover from a regime with strong superconducting correlations in the quantum dot to a regime in which the proximity effect on the quantum dot is suppressed. We analyze the current fluctuations of this crossover in the shot-noise regime. In particular, we predict that the full counting statistics changes from Poissonian with charge 2e, typical for Cooper pairs, to Poissonian with charge e, when the superconducting proximity effect is present. Thus, the onset of the superconducting proximity effect is revealed by the reduction of the Fano factor from 2 to 1.Comment: 5 pages, 3 figure

    The Background of Mitochondrial DNA Haplogroup J Increases the Sensitivity of Leber's Hereditary Optic Neuropathy Cells to 2,5-Hexanedione Toxicity

    Get PDF
    Leber's hereditary optic neuropathy (LHON) is a maternally inherited blinding disease due to mitochondrial DNA (mtDNA) point mutations in complex I subunit genes, whose incomplete penetrance has been attributed to both genetic and environmental factors. Indeed, the mtDNA background defined as haplogroup J is known to increase the penetrance of the 11778/ND4 and 14484/ND6 mutations. Recently it was also documented that the professional exposure to n-hexane might act as an exogenous trigger for LHON. Therefore, we here investigate the effect of the n-hexane neurotoxic metabolite 2,5-hexanedione (2,5-HD) on cell viability and mitochondrial function of different cell models (cybrids and fibroblasts) carrying the LHON mutations on different mtDNA haplogroups. The viability of control and LHON cybrids and fibroblasts, whose mtDNAs were completely sequenced, was assessed using the MTT assay. Mitochondrial ATP synthesis rate driven by complex I substrates was determined with the luciferine/luciferase method. Incubation with 2,5-HD caused the maximal loss of viability in control and LHON cells. The toxic effect of this compound was similar in control cells irrespective of the mtDNA background. On the contrary, sensitivity to 2,5-HD induced cell death was greatly increased in LHON cells carrying the 11778/ND4 or the 14484/ND6 mutation on haplogroup J, whereas the 11778/ND4 mutation in association with haplogroups U and H significantly improved cell survival. The 11778/ND4 mutation on haplogroup U was also more resistant to inhibition of complex I dependent ATP synthesis by 2,5-HD. In conclusion, this study shows that mtDNA haplogroups modulate the response of LHON cells to 2,5-HD. In particular, haplogroup J makes cells more sensitive to its toxic effect. This is the first evidence that an mtDNA background plays a role by interacting with an environmental factor and that 2,5-HD may be a risk element for visual loss in LHON. This proof of principle has broad implications for other neurodegenerative disorders such as Parkinson's disease

    Design and synthesis of novel DNA binders

    Get PDF
    In this context, molecular recognition of DNA by polycyclic heterocycles having a planar structure bearing appropriate side chains have been widely investigated. In the course of our work aimed at developing novel heterocycles of pharmaceutical interest, we designed and synthetized several templates as potential substrate in drug design
    corecore