608 research outputs found

    2.5% efficient organic plastic solar cells

    Get PDF
    We show that the power conversion efficiency of organic photovoltaic devices based on a conjugated polymer/methanofullerene blend is dramatically affected by molecular morphology. By structuring the blend to be a more intimate mixture that contains less phase segregation of methanofullerenes, and simultaneously increasing the degree of interactions between conjugated polymer chains, we have fabricated a device with a power conversion efficiency of 2.5% under AM1.5 illumination. This is a nearly threefold enhancement over previously reported values for such a device, and it approaches what is needed for the practical use of these devices for harvesting energy from sunlight.

    Identifying the Nature of Charge Recombination in Organic Solar Cells from Charge-Transfer State Electroluminescence

    Get PDF
    Charge-transfer (CT) state electroluminescence is investigated in several polymer:fullerene bulk heterojunction solar cells. The ideality factor of the electroluminescence reveals that the CT emission in polymer:fullerene solar cells originates from free-carrier bimolecular recombination at the donor-acceptor interface, rather than a charge-trap-mediated process. The fingerprint of the presence of nonradiative trap-assisted recombination, a voltage-dependent CT electroluminescence quantum efficiency, is only observed for the P3HT:PCBM system, which is explained by a reduction of the competing bimolecular recombination rate. These results are in agreement with measurements of the illumination-intensity dependence of the open-circuit voltage

    Impact of Blend Morphology on Interface State Recombination in Bulk Heterojunction Organic Solar Cells

    Get PDF
    International audienceThis work is a re-investigation of the impact of blend morphology and thermal annealing on the electrical performance of regioregular P3HT:PC 60 BM. The blend is first characterized by combining atomic force microscopy, X-rays diffraction and Time-of-Flight experiments. Then, current-voltage characteristics of photodiode devices are measured in the dark and under illumination. Finally, the existence of exponential tails of electronic gap states is experimentally confirmed by measuring the device spectral response in the sub-band gap regime. This method reveals the existence of a large density of gap states, which is partially reduced by successive annealing steps. The comparison between drift and diffusion 2 simulations and charge transport experiments show that, when band gap tails are properly taken into account, simulations can satisfactorily reproduce experimental currents under both dark and illumination conditions as a function of voltage and annealing time. This work further confirms the critical impact of tails states on the performance of solar cells

    Functionalized Poly(3-hexylthiophene)s via Lithium–Bromine Exchange

    Get PDF
    Poly(3-hexylthiophene) (P3HT) is one of the most extensively investigated conjugated polymers and has been employed as the active material in many devices including field-effect transistors, organic photovoltaics and sensors. As a result, methods to further tune the properties of P3HT are desirable for specific applications. Herein, we report a facile postpolymerization modification strategy to functionalize the 4-position of commercially available P3HT in two simple steps–bromination of the 4-position of P3HT (Br–P3HT) followed by lithium−bromine exchange and quenching with an electrophile. We achieved near quantitative lithium–bromine exchange with Br–P3HT, which requires over 100 thienyl lithiates to be present on a single polymer chain. The lithiated-P3HT is readily combined with functional electrophiles, resulting in P3HT derivatives with ketones, secondary alcohols, trimethylsilyl (TMS) group, fluorine, or an azide at the 4-position. We demonstrated that the azide-modified P3HT could undergo Cu-catalyzed or Cu-free click chemistry, significantly expanding the complexity of the structures that can be appended to P3HT using this method.National Science Foundation (U.S.) (ECCS-0939514

    Comparative study: the effect of annealing conditions on the properties of P3HT:PCBM blends

    Get PDF
    This paper presents a detailed study on the role of various annealing treatments on organic poly(3-hexylthiophene) and [6]-phenyl-C61-butyric acid methyl ester blends under different experimental conditions. A combination of analytical tools is used to study the alteration of the phase separation, structure and photovoltaic properties of the P3HT:PCBM blend during the annealing process. Results showed that the thermal annealing yields PCBM ‘‘needle-like’’ crystals and that prolonged heat treatment leads to extensive phase separation, as demonstrated by the growth in the size and quantity of PCBM crystals. The substrate annealing method demonstrated an optimal morphology by eradicating and suppressing the formation of fullerene clusters across the film, resulting in longer P3HT fibrils with smaller diameter. Improved optical constants, PL quenching and a decrease in the P3HT optical bad-gap were demonstrated for the substrate annealed films due to the limited diffusion of the PCBM molecules. An effective strategy for determining an optimized morphology through substrate annealing treatment is therefore revealed for improved device efficiency.Web of Scienc

    Solution aging and degradation of a transparent conducting polymer dispersion

    Full text link
    As organic electronics improve, there is increased research interest on the longevity and stability of both the device and individual material components. Most of these studies focus on post deposition degradation and aging of the film. In this article, we examine the stability of polyelectrolyte dispersions before film coating. We observe substantial differences in the solution properties of the transparent conducting polymer, S-P3MEET, when comparing fresh versus aged dispersions and relate these solution differences to film properties. The aged dispersion contains large agglomerates and exhibits a typical shear-thinning rheological behavior, which results in non-uniformity of the spin-coated films. Near edge X-ray absorption fine structure measurements were used to differentiate the changes in bonding and oxidation states and show that aged S-P3MEET is more highly self-doped than fresh S-P3MEET. We also show that addition of acid, salt or heat to fresh S-P3MEET can accelerate the degradation/aging process but are subjected to different mechanisms. Conductivity measurements of S-P3MEET films illustrate that there is a tradeoff between increased work function and decreased conductivity upon perfluorinated ionomer (PFI) loading. The formation of nanostructure in solution is also correlated to film morphology variations obtained from atomic force microscopy. We expect that dispersion aging is a process that commonly exists in most solution-dispersed polyelectrolyte materials and that the methodologies presented in this paper might be beneficial to future degradation/stability studies
    • …
    corecore