332 research outputs found

    The rodent uterotrophic assay: Critical protocol features, studies with nonyl phenols, and comparison with a yeast estrogenicity assay

    Get PDF
    The major protocol features of the immature rat uterotrophic assay have been evaluated using a range of reference chemicals. The protocol variables considered include the selection of the test species and route of chemical administration, the age of the test animals, the maintenance diet used, and the specificity of the assay for estrogens. It is concluded that three daily oral administrations of test chemicals to 21- to 22-day-old rats, followed by determination of absolute uterus weights on the fourth day, provide a sensitive and toxicologically relevant in vivo estrogenicity assay. Rats are favored over mice for reasons of toxicological practice, but the choice of test species is probably not a critical protocol variable, as evidenced by the similar sensitivity of rats and mice to the uterotrophic activity of methoxychlor. Vaginal opening is shown to be a useful, but nondefinitive, adjunct to the uterotrophic assay. The ability of test chemicals to reduce or abolish the uterotrophic response of estradiol is suggested to provide a useful extension of the uterotrophic assay for the purpose of detecting antiestrogens. The results of a series of studies on the environmental estrogen nonyl phenol (NP), and its linear isomer n -nonyl phenol, confirm that branching of the aliphatic side chain is important for activity. 17beta-Desoxyestradiol is shown to be of similar activity to estradiol in the uterotrophic assay and is suggested to represent the "parent" estrogen of NP. Benzoylation of NP and 17-desoxyestradiol did not affect their uterotrophic activity, in contrast to the enhancing effect of benzoylation on estradiol. Selected chemicals shown to be active in the immature rat uterotrophic assay were also evaluated in an in vitro yeast human estrogen receptor transactivation assay. Most of the chemicals gave similar qualitative responses to those seen in the uterotrophic assay, and the detection of the estrogen methoxychlor by the yeast assay evidenced a degree of intrinsic metabolic competence. However, the assay had a reduced ability (compared to rodents) to hydrolyze the benzoate ester of estradiol, and the estrogenic benzoate derivative of NP was not active in the yeast assay. These last results indicate that current metabolic deficiencies of in vitro estrogenicity assays will limit the value of negative data for the immediate future. The results described illustrate the intrinsic complexity of evaluating chemicals for estrogenic activities and confirm the need for rigorous attention to experimental design and criteria for assessing estrogenic activity

    Reliability and validity of three questionnaires measuring context-specific sedentary behaviour and associated correlates in adolescents, adults and older adults

    Get PDF
    BACKGROUND: Reliable and valid measures of total sedentary time, context-specific sedentary behaviour (SB) and its potential correlates are useful for the development of future interventions. The purpose was to examine test-retest reliability and criterion validity of three newly developed questionnaires on total sedentary time, context-specific SB and its potential correlates in adolescents, adults and older adults. METHODS: Reliability and validity was tested in six different samples of Flemish (Belgium) residents. For the reliability study, 20 adolescents, 22 adults and 20 older adults filled out the age-specific SB questionnaire twice. Test-retest reliability was analysed using Kappa coefficients, Intraclass Correlation Coefficients and/or percentage agreement, separately for the three age groups. For the validity study, data were retrieved from 62 adolescents, 33 adults and 33 older adults, with activPAL as criterion measure. Spearman correlations and Bland-Altman plots (or non-parametric approach) were used to analyse criterion validity, separately for the three age groups and for weekday, weekend day and average day. RESULTS: The test-retest reliability for self-reported total sedentary time indicated following values: ICC = 0.37-0.67 in adolescents; ICC = 0.73-0.77 in adults; ICC = 0.68-0.80 in older adults. Item-specific reliability results (e.g. context-specific SB and its potential correlates) showed good-to-excellent reliability in 67.94%, 68.90% and 66.38% of the items in adolescents, adults and older adults respectively. All items belonging to sedentary-related equipment and simultaneous SB showed good reliability. The sections of the questionnaire with lowest reliability were: context-specific SB (adolescents), potential correlates of computer use (adults) and potential correlates of motorized transport (older adults). Spearman correlations between self-reported total sedentary time and the activPAL were different for each age group: rho = 0.02-0.42 (adolescents), rho = 0.06-0.52 (adults), rho = 0.38-0.50 (older adults). Participants over-reported total sedentary time (except for weekend day in older adults) compared to the activPAL, for weekday, weekend day and average day respectively by +57.05%, +46.29%, +53.34% in adolescents; +40.40%, +19.15%, +32.89% in adults; +10.10%, -6.24%, +4.11% in older adults. CONCLUSIONS: The questionnaires showed acceptable test-retest reliability and criterion validity. However, over-reporting of total SB was noticeable in adolescents and adults. Nevertheless, these questionnaires will be useful in getting context-specific information on SB

    Functional Annotation and Identification of Candidate Disease Genes by Computational Analysis of Normal Tissue Gene Expression Data

    Get PDF
    Background: High-throughput gene expression data can predict gene function through the ‘‘guilt by association’ ’ principle: coexpressed genes are likely to be functionally associated. Methodology/Principal Findings: We analyzed publicly available expression data on normal human tissues. The analysis is based on the integration of data obtained with two experimental platforms (microarrays and SAGE) and of various measures of dissimilarity between expression profiles. The building blocks of the procedure are the Ranked Coexpression Groups (RCG), small sets of tightly coexpressed genes which are analyzed in terms of functional annotation. Functionally characterized RCGs are selected by means of the majority rule and used to predict new functional annotations. Functionally characterized RCGs are enriched in groups of genes associated to similar phenotypes. We exploit this fact to find new candidate disease genes for many OMIM phenotypes of unknown molecular origin. Conclusions/Significance: We predict new functional annotations for many human genes, showing that the integration of different data sets and coexpression measures significantly improves the scope of the results. Combining gene expression data, functional annotation and known phenotype-gene associations we provide candidate genes for several geneti

    Horizontal DNA transfer mechanisms of bacteria as weapons of intragenomic conflict

    Get PDF
    Horizontal DNA transfer (HDT) is a pervasive mechanism of diversification in many microbial species, but its primary evolutionary role remains controversial. Much recent research has emphasised the adaptive benefit of acquiring novel DNA, but here we argue instead that intragenomic conflict provides a coherent framework for understanding the evolutionary origins of HDT. To test this hypothesis, we developed a mathematical model of a clonally descended bacterial population undergoing HDT through transmission of mobile genetic elements (MGEs) and genetic transformation. Including the known bias of transformation toward the acquisition of shorter alleles into the model suggested it could be an effective means of counteracting the spread of MGEs. Both constitutive and transient competence for transformation were found to provide an effective defence against parasitic MGEs; transient competence could also be effective at permitting the selective spread of MGEs conferring a benefit on their host bacterium. The coordination of transient competence with cell-cell killing, observed in multiple species, was found to result in synergistic blocking of MGE transmission through releasing genomic DNA for homologous recombination while simultaneously reducing horizontal MGE spread by lowering the local cell density. To evaluate the feasibility of the functions suggested by the modelling analysis, we analysed genomic data from longitudinal sampling of individuals carrying Streptococcus pneumoniae. This revealed the frequent within-host coexistence of clonally descended cells that differed in their MGE infection status, a necessary condition for the proposed mechanism to operate. Additionally, we found multiple examples of MGEs inhibiting transformation through integrative disruption of genes encoding the competence machinery across many species, providing evidence of an ongoing "arms race." Reduced rates of transformation have also been observed in cells infected by MGEs that reduce the concentration of extracellular DNA through secretion of DNases. Simulations predicted that either mechanism of limiting transformation would benefit individual MGEs, but also that this tactic's effectiveness was limited by competition with other MGEs coinfecting the same cell. A further observed behaviour we hypothesised to reduce elimination by transformation was MGE activation when cells become competent. Our model predicted that this response was effective at counteracting transformation independently of competing MGEs. Therefore, this framework is able to explain both common properties of MGEs, and the seemingly paradoxical bacterial behaviours of transformation and cell-cell killing within clonally related populations, as the consequences of intragenomic conflict between self-replicating chromosomes and parasitic MGEs. The antagonistic nature of the different mechanisms of HDT over short timescales means their contribution to bacterial evolution is likely to be substantially greater than previously appreciated

    Critical Thinking in Nursing Education: Literature Review

    Get PDF
    The need for critical thinking in nursing has been accentuated in response to the rapidly changing health care environment. Nurses must think critically to provide effective care whilst coping with the expansion in role associated with the complexities of current health care systems. This literature review will present a history of inquiry into critical thinking and research to support the conclusion that critical thinking is necessary not only in the clinical practice setting, but also as an integral component of nursing education programs to promote the development of nurses’ critical thinking abilities. The aims of this paper are: (a) to review the literature on critical thinking; (b) to examine the dimensions of critical thinking; (c) to investigate the various critical thinking strategies for their appropriateness to enhance critical thinking in nurses, and; (d) to examine issues relating to evaluation of critical thinking skills in nursing.</ul

    Effective Rheology of Bubbles Moving in a Capillary Tube

    Full text link
    We calculate the average volumetric flux versus pressure drop of bubbles moving in a single capillary tube with varying diameter, finding a square-root relation from mapping the flow equations onto that of a driven overdamped pendulum. The calculation is based on a derivation of the equation of motion of a bubble train from considering the capillary forces and the entropy production associated with the viscous flow. We also calculate the configurational probability of the positions of the bubbles.Comment: 4 pages, 1 figur

    Expected Performance of the ATLAS Experiment - Detector, Trigger and Physics

    Get PDF
    A detailed study is presented of the expected performance of the ATLAS detector. The reconstruction of tracks, leptons, photons, missing energy and jets is investigated, together with the performance of b-tagging and the trigger. The physics potential for a variety of interesting physics processes, within the Standard Model and beyond, is examined. The study comprises a series of notes based on simulations of the detector and physics processes, with particular emphasis given to the data expected from the first years of operation of the LHC at CERN

    ELECTROENCEPHALOGRAPHY (EEG) AND ITS USE IN MOTOR LEARNING AND CONTROL

    Get PDF
    Electroencephalography (EEG) is a non-invasive technique of measuring electric currents generated from active brain regions and is a useful tool for researchers interested in motor control. The study of motor learning and control seeks to understand the way the brain understands, plans and executes movement both physical and imagined. Thus, the purpose of this study was to better understand the ways in which electroencephalography can be used to measure regions of the brain involved with motor control and learning. For this purpose, two independent studies were completed using EEG to monitor brain activity during both executed and imagined actions. The first study sought to understand the cognitive demand of altering a running gait and provides EEG evidence of motor learning. 13 young healthy runners participated in a 6-week in-field gait-retraining program that altered running gait by increasing step rate (steps per minute) by 5-10%. EEG was collected while participants ran on a treadmill with their original gait as a baseline measurement. After the baseline collection, participants ran for one minute at the same speed with a 5-10% step rate increase while EEG was collected. Participants then participated in a 6-week in-field gait-retraining program in which they received bandwith feedback while running in order to learn the new gait. After completing the 6-week training protocol, participants returned to the lab for post training EEG collection while running with the new step rate. Power spectral density plots were generated to measure frequency band power in all gait-retraining phases. Results in the right prefrontal cortex showed a significant increase in beta (13-30 Hz) while initially running with the new gait compared to the baseline step rate. Previous work suggests the right prefrontal cortex is involved with the inhibition of a previously learned behavior and thus, our results suggest an increase in cognitive load to inhibit the previous full stride motion. After training, this increase in beta over the right prefrontal cortex decreased, suggesting motor adaptations had occurred as a result of motor learning. These results give promising evidence for a new method of ensuring permanent changes in performance that will benefit rehabilitation and athletic performance training programs. The second study in this project sought to understand differences in right and left-handers as they mentally simulate movement. 24 right and left-handed individuals (12 right-handers, 12 left-handers) were shown pictures of individual hands on a screen while EEG was collected. Previous research has shown than while solving this task, participants mentally rotate a mental representation of their own hand to determine the handedness of the image. Event-related potential results showed that right-handers had an earlier and greater activation in the parietal regions than left-handers, whereas left-handers had a later and greater activation in the motor related brain regions compared to right-handers. These results suggest differing strategies while mentally solving motor related tasks between right and left-handers. We speculate this is a result of left-handers' need to adapt to a majorly right-hand dominant environment. Both these studies show the benefits of using EEG to understand the motor system in physically executed and imagined actions
    corecore