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Electroencephalography (EEG) is a non-invasive technique of measuring electric currents

generated from active brain regions and is a useful tool for researchers interested in motor

control. The study of motor learning and control seeks to understand the way the brain

understands, plans and executes movement both physical and imagined. Thus, the purpose of

this study was to better understand the ways in which electroencephalography can be used to

measure regions of the brain involved with motor control and learning. For this purpose, two

independent studies were completed using EEG to monitor brain activity during both executed

and imagined actions. The first study sought to understand the cognitive demand of altering a

running gait and provides EEG evidence of motor learning. 13 young healthy runners

participated in a 6-week in-field gait-retraining program that altered running gait by increasing

step rate (steps per minute) by 5-10%. EEG was collected while participants ran on a treadmill



with their original gait as a baseline measurement. After the baseline collection, participants ran

for one minute at the same speed with a 5-10% step rate increase while EEG was collected.

Participants then participated in a 6-week in-field gait-retraining program in which they received

bandwith feedback while running in order to learn the new gait. After completing the 6-week

training protocol, participants returned to the lab for post training EEG collection while running

with the new step rate. Power spectral density plots were generated to measure frequency band

power in all gait-retraining phases. Results in the right prefrontal cortex showed a significant

increase in beta (13-30 Hz) while initially running with the new gait compared to the baseline

step rate. Previous work suggests the right prefrontal cortex is involved with the inhibition of a

previously learned behavior and thus, our results suggest an increase in cognitive load to inhibit

the previous full stride motion. After training, this increase in beta over the right prefrontal

cortex decreased, suggesting motor adaptations had occurred as a result of motor learning. These

results give promising evidence for a new method of ensuring permanent changes in

performance that will benefit rehabilitation and athletic performance training programs. The

second study in this project sought to understand differences in right and left-handers as they

mentally simulate movement. 24 right and left-handed individuals (12 right-handers, 12 left-

handers) were shown pictures of individual hands on a screen while EEG was collected.

Previous research has shown than while solving this task, participants mentally rotate a mental



representation of their own hand to determine the handedness of the image. Event-related

potential results showed that right-handers had an earlier and greater activation in the parietal

regions than left-handers, whereas left-handers had a later and greater activation in the motor

related brain regions compared to right-handers. These results suggest differing strategies while

mentally solving motor related tasks between right and left-handers. We speculate this is a result

of left-handers’ need to adapt to a majorly right-hand dominant environment. Both these studies

show the benefits of using EEG to understand the motor system in physically executed and

imagined actions.
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Chapter 1: Introduction

The human brain is made up of roughly 86 billion independent nerve cells (Azevedo

et al., 2009). Branch-like dendrites emerge from these nerve cells to receive electrical

messages from neighboring neurons. This allows these cells to communicate with other

areas of the nervous system. It is this communication between neurons that makes the

majority of human function possible. An essential function of the brain is the planning and

execution of bodily movement. The following pages discuss the neural brain regions

involved with movement and how they can be monitored with the wuse of

electroencephalography (EEG).

Movement is a vital feature of human life. The 1932 Nobel Prize winner, Sir Charles

Sherrington, emphasized the importance of movement by saying, “to move things is all that

mankind can do, for such the sole executant is muscle, whether in whispering a syllable or

in felling a forest.”(Sherrington, 1924). Without movement, the life sustaining abilities to

eat, walk, reproduce and communicate are lost. Surely, with such a critical aspect of life

comes an importance to understand the neural processes involved. The area of study

dealing with the understanding of the neural, physical and behavioral aspects of executing

movement is known as motor control (Schmidt, 1988). The study of motor control has



provided pivotal information towards understanding human movement since its

foundation in the late 1800s (Bowditch and Southard, 1882) and has been accelerated in

recent years with the development of technology and brain mapping methods.

Advances in recent technology have allowed for the monitoring and imaging of

brain activity. This progress has benefited many disciplines of study across multiple fields

such as medical diagnostics, prosthesis research and clinical practice (e.g. Castellano and

Falini, 2016; Thut and Pascual-Leone, 2010; Muller-Putz, 2005). In years prior to these

developments, the neural networks of the brain were difficult to localize, due to the fast

rate at which they operate. However, it is now possible to observe regions of the brain with

high temporal precision as they interact with one another. This ability to monitor changes

in brain activation at a millisecond level is particularly important in the study of motor

control where it seems that the decision to move and movement initiation are

instantaneous (i.e. motor commands travel with a velocity of up to 59 m/s and can fire

every 0.4 milliseconds; Harayama et al., 1991). An effective tool commonly used to

measure these motor pathways is EEG.

Since its first recording by Hans Berger in 1929 (Brazier, 1971), EEG has developed

into a standard method of measuring brain activity (Schomer & da Silva, 2011). EEG is

collected through electrodes on the scalp that record electrical currents generated below



the skull surface. These currents can be used to identify a general location and magnitude

of brain activity. The combination of moderate spatial and high temporal accuracy makes

EEG an excellent option for mapping the brain function of sensory, motor and cognitive

pathways (Toga & Mazziota, 2002; Shibasaki, 2012).

EEG has been used to benefit the study of motor control in many ways (Babiloni et

al., 2009; Stasi et al,, 2015; Caviness et al., 2006; Busse & Silverman, 1951; Chuang et al,,

2013; Williams et al., 2016). An important area of EEG studies focus on measuring the

neural networks of healthy humans involved in task performance. Increasing the

knowledge of successful performance can assist in the development of training protocols

and performance evaluation. Babiloni and colleagues (2009) compared the EEG of elite

gymnasts to non-elite gymnasts. Their results showed a smaller cortical activation in elite

athletes compared to non-elite athletes when making sport-related judgments. This gives

evidence of an increase in neural efficiency as expertise is developed. Human performance

and expertise is of great importance in military populations and thus EEG is commonly

used for these purposes. In 2015 a study observed the brain activity of military pilots as

they flew helicopters. An increase of EEG activity was shown during highly demanding

procedures (i.e., flight take-off and landing). These results suggest that EEG recordings

may be used to evaluate a pilot’s cognitive performance and thus help to avoid catastrophic



events (Stasi et al.,, 2015). With the increasing pressure on athletes and soldiers to perform

successfully, EEG studies involving human performance continue to increase in popularity.

Another branch of motor control commonly employing EEG is the study of motor

dysfunctions. In a system as complex as the nervous system there are bound to be

malfunctions and EEG has helped to describe and help improve some of these malfunctions

(Duff, 2004; Cao et al., 2008; Cusack et al., 2012; England et al., 1958; Sburlea et al., 2015).

Cao and colleagues used a computer algorithm to analyze the EEG data and isolate specific

traits of the EEG profile that could be used to classify the severity of mild traumatic brain

injury (mTBI)(Cao et al., 2008). This research will benefit many populations including

athletes and soldiers due to the increasing knowledge of the long-term effects of mTBI

(Almeida-Suhett et al., 2014; Mclnnes et al.,, 2017). In a separate study involving upper-

limb amputees, differences in brain areas of amputees were seen as they observed and

imitated arm actions done by intact demonstrators (with no prosthesis) and amputee

demonstrators (with a prosthesis; Cusack et al.,, 2012). These findings indicate a correction

mechanism used to account for the incongruence of a limb that does not match their own.

This information is vital for the design of effective rehabilitation techniques. There are

several examples of how EEG has been used to help the study of motor dysfunctions and



this number will continue to grow as additional methods of analysis and research

techniques are developed.

Progress of recent analysis techniques and EEG collection strategies have paved the

way for a large range of possible EEG studies to be done in the future (Gwin et al., 2010;

Sburlea et al,, 2015; Wagner et al,, 2016; Bradford, Lukos & Ferris, 2016; Kelly, Mizelle &

Wheaton, 2015). Previously, it has been difficult to collect EEG while participants

performed gross motor skills due to the EEG signal being susceptible to noise. Recent

studies have developed methods to remove this noise from the EEG signal, making it

possible to observe the brain as it coordinates more complex movements (Gwin et al,,

2010; Kline et al,, 2015). This capability will benefit motor control immensely in both

human performance and motor dysfunction. Additional techniques are using EEG

coherence to better understand brain connectivity and cortical structure (Kelly et al., 2015;

Wheaton et al,, 2008). This information can help to understand different types of strokes

and rehabilitative practices designed for therapeutic intervention. There are also many

new techniques being used in order to develop EEG-based brain computer interfaces (BCI)

that, among other purposes, can be used by disabled individuals suffering from movement

disorders to interact with the environment (Kaufmann et al, 2014; Bell et al, 2008;



Rajangam et al,, 2016; Alison et al., 2008). Clearly, the advent of new, more advanced EEG

technologies shows great promise for further development in the future.

The purpose of this work was to better understand the ways in which

electroencephalography can be used to measure regions of the brain involved with motor

control and learning. In order to achieve this purpose, two experiments were conducted

that apply specific methods of EEG collection and analysis to measure the motor systems of

interest. One of these studies involved collecting EEG while participants ran with the

purpose of determining the cognitive demand of running gait alteration. The second study

involved the use of EEG to identify further differences in brain connectivity between right

and left-handed individuals during motor simulation. Both of these studies were designed

to further develop the use of EEG in motor control and contribute to the study of human

movement.



Chapter 2: Review of Literature

Introduction

200 years of research has provided an impressive foundation for the

understanding of the brain (Chvatal, 2015; Gross, 2007; Shibasaki, 2008). However, most

of the brain’s ability to control movement remains a mystery and continues to be at the

forefront of scientific research (Amunts et al., 2014; Insel et al., 2013; Shibasaki, 2012). For

this cause, EEG has been used to address many of these unknown areas. EEG is an amazing

technology used to investigate brain regions in real-time. This technology is beneficial to

the study of human movements both simple (e.g. finger movement [Pfurtscheller et al,,

2003]) and complex (e.g. running on an inclined surface [Bradford, Lukos & Ferris, 2016]).

While using EEG to address movement related questions, it is important to have a

knowledge of the physiological sources of the EEG data, the ways in which it is recorded

and for what purpose the EEG data is collected. The following sections will thoroughly

explain EEG and how it can be used to benefit the understanding of motor learning and

control.

This description will start by explaining the discovery of electricity in the brain and

the processes through which these electrical impulses reach the scalp surface. Scientists

have studied human movement for many hundreds of years and thus, after developing a



clear view of the neural processes used to initiate movement, the history and methods of

measuring motor learning and control will be discussed. This description will include

psychomotor measures, such as monitoring reaction time and performance errors, as well

as neurological measures involving a brief description of fMRI and PET. A more thorough

description of EEG will be provided in the following section describing the history and

methods of EEG as well as ways in which those methods have been used to measure motor

activity.

The final topic discussed in this review will help the reader to understand the great

need for the use of EEG in the study of motor processes. Current studies attempting to

increase the understanding of brain injuries, neurodegenerative diseases and other motor

dysfunctions will be discussed as well as methods to assist those affected by these

dysfunctions. This area is currently seeing great improvement, however, the need for

further knowledge remains.

At the conclusion of this chapter the reader should have an in depth understanding

of early research helping to understand the central nervous system, a surface

comprehension of previous research measuring motor learning and performance, and the

neural implications of EEG data for motor control in both healthy and impaired individuals.



PART I: The History of Electricity and the Brain

Development of the neuron theory

The body is filled with millions of neuron-driven motor units that excite our muscles to

make human movement possible. Even a movement as simple as an eye blink is only

possible due to a complex series of neural connections controlling every aspect of the

movement. In the current day this is common knowledge, but this has not been the case for

long. Luigi Galvani (1737-1798) was among the first to conceptualize the idea that

electricity was the cause of human movement in a discovery Galvani called “animal

electricity” (Brazier, 1961; Mauro, 1969; O’Leary & Goldring, 1976). Galvani’s experiment

involved an electrically powered wire he used to excite dead frog’s legs. This sparked the

idea of electricity generated in the body. In the following years, Galvani was forced to

ceaselessly defend his hypothesis against many of the days’ top scientists. As a result of

Galvani’'s persistence, two important ideas came forth that impacted the world’s

understanding of the human body: first, animal tissue is a conductor of electricity and

second, electricity may be generated from inside the body (Mauro, 1969).

The discovery of “animal electricity” sparked a myriad of research done in efforts to

understand the electrophysiological properties of human tissue. In 1836, a German

scientist named Christian Gottfried Ehrenberg (1795-1876) proposed the first description



of nerve cells, an idea that he learned from studying the nervous system of leeches

(Ehrenberg, 1836). This nerve cell hypothesis was further supported by work being done

in Jan Evangelista Purkinje’s (1787-1869) lab. Purkinje and his students were able to

provide the first microscopic images of these cells, which they labeled “large cells in the

cerebellum of mammals” (Purkinje, 1837; Valentin, 1836; Lopez-Munoz, Boya, Alamo,

2006). By the mid-19th century the notion of a human nervous system that controlled

movement by means of electrical impulses was beginning to gain credit in the accepted

scientific knowledge.

Electricity in the brain continued to be studied for the next 40 years without any real

progress. It wasn’t until the contention between Camillo Golgi (1843-1926) and Santiago

Ramon y Cajal (1852-1934) that progress was made (Lopez-Munoz & Alamo, 2006). In

1873 Golgi introduced the new method of silver chromate staining that made it possible to

see cells (Golgi, 1873). Golgi’'s work with silver staining caused him to support the

“reticulum theory” put forward by Josef von Gerlach two years prior (Gerlach, 1871). The

“reticulum theory” declared that the entire nervous system, including the brain was one

continuous network made up of a dense mesh of thin filament. This was the accepted belief

of the time and thus when Ramon y Cajal first contradicted this with the “neuron theory” it

was not accepted openly (Lopez-Munoz & Alamo, 2006). Neuron theory stated that rather
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than a large continuous system, each nerve cell is a totally autonomous physiological unit

(Ramon y Cajal, 1888). Ramon y Cajal used Golgi’s method to find images of single nerves

with dendritic spines that worked to receive electrical impulses from other nerves. It was

Ramon y Cajal that discovered the groundwork for the neuron theory that fuels the way

scientists study nerves today. Years later, the discovery of the synapse by Sir Charles

Sherrington was inspired by Ramon y Cajal’s pivotal research and further developed the

knowledge of how the CNS functions. Nerves do not communicate one with another by way

of contact but rather, there exists a small space between the terminal branches of the axon

and the receiving dendrite (Sherrington, 1906). These findings have fueled hundreds of

discoveries of how messages are relayed from cell to cell.

Discovering the motor cortex

In the same period that the neuron theory was gaining its foundation, important

research was being done on the brain to localize areas that manage specific functions. In

1870, while doing research on epileptic patients, the English neurologist John Hughling

Jackson observed resemblances of common voluntary movements in the seizures his

patients were experiencing (Jackson, 1870). This led Jackson to the hypothesis that there

exists an area of the brain, just anterior to the central sulcus that plays a meaningful role in

controlling movement. It was commonly believed at the time that the cortical brain played

11



no role in motor function and was nothing but an insignificant “rind” (Gross, 2007).

Jackson, however, believed otherwise and his hypothesis fueled the studies of Gustav

Fritsch and Eduard Hitzig in Berlin as well as David Ferrier in England (Fritsch & Hitzig,

1870; Ferrier, 1873). These experiments confirmed Jackson’s proposal and provided an

important discovery: movements seemed to be localized to specific spots in the brain. The

area anterior to the central sulcus was in essence a motor map for the body and particular

body parts all had a specific region. When lesions were made in the brains of the dogs used

in these studies, motor control of that body part was hindered or lost after healing from the

surgery. Schaltenbrand and Woolsley (1964) and Penfield and Jasper (1954) showed that

this motor map applied also to humans and other species. The same general topographic

map was found across many species although the relative proportions of areas

representing body parts were not the same. This fact generated the discovery that the

motor map is not a point-to-point representation of the body. Instead, more finely

controlled areas, such as fingers and mouth, are represented with larger areas suggesting a

greater number of neurons activated for fine control (Kalaska & Rizzolatti, 2013).

What is now known as the motor cortex is made up of three principal regions. It was

Campbell (1905) and Broadmann (1908) that first discovered functional divisions when

they observed differences in functionality for this new motor area. While dividing the

12



human cerebral cortex into many different sections they separated the motor map into two

functionally distinct areas. The region directly rostral to the central sulcus is now known

as the primary motor cortex (M1). This brain region is essential in motor control and plays

a role in the generation of movement as well as its kinetics and kinematics (Shibasaki &

Hallett, 2006; Georgopoulos et al., 1982; Kalaska et al., 1989). The area of the motor cortex

that lies anterior to M1 is called the premotor cortex. The premotor cortex participates in

many motor functions, which include: the representations of peripersonal space, the

coordination with sensory inputs to direct motor reactions, the formulation of specific

plans for reaching movements and the learning of motor skills (Avenanti et al., 2012; Cisek

& Kalaska, 2005; Fogassi et al,, 2005; Mitz et al., 1991). Years after these two motor areas

had been discovered, Woolsey (1951) would identify a third area involved with voluntary

movement that, unlike the previous two regions, evoked movements on both sides of the

body when stimulated. This area, located on the medial surface of the cerebral hemisphere,

is now known as the supplementary motor area (SMA) and is known to play a role in

movement planning, the sequential organization of multiple movements and the

monitoring and evaluation of movement outcomes (Hoshi & Tanji, 2004; Scangos et al,,

2013; Tanji, 2001). It is these three units of the brain, the primary motor cortex, the

premotor cortex, and the supplementary motor area that make up the motor cortex that is

13



known today. The ability to monitor these three constituent regions as they process and

perform motor actions has only been possible in recent years and has played a pivotal role

in the measurement of motor learning and control.

PART II: Methods of Measuring Motor Learning and Control

In 1997 Robert Christina wrote a review article explaining and assessing the most

popular methods of measuring motor learning and control at that time. In this paper,

Christina states that the biggest challenge in studying motor learning is the inability to

measure motor learning as it happens in the brain and that it must be inferred from motor

performance (Christina, 1997). It has only been twenty years since Christina’s remarks and

already the barriers he mentioned have been overcome. With the use of

electroencephalography, fMRI and other methods of brain imaging it is now possible to

monitor changes in the brain that suggest learning has taken place. Using information from

studies involving both observed motor performance and brain imaging, a more complete

understanding of what is happening in the brain during movement can be formed. In the

following section, methods used to track motor learning and control will be discussed.

These include measurements of behavior and performance, as well as the neurological

measures, which were alluded to previously.

14



Performance measures

Although early studies in motor learning were limited to performance measures,

major contributions were made in the discipline nonetheless. Since the late 1800s,

multiple methods have been developed to investigate the way in which the brain

coordinates and learns motor skills (Bowditch & Southard, 1882; Fullerton & Cattell, 1892).

Three methods that have proven to be effective are monitoring reaction time (Henry &

Rogers 1960; Klapp, 1975), measuring performance errors (Henry, 1974; Hancock et al,,

1995), and kinematic measures (Hall, 2003).

A common approach to studying the mechanisms that control movement is the

process of monitoring reaction time. Reaction time is the interval between the

presentation of a signal and the initiation of movement (Rose & Christina, 2006).

Researchers have used reaction time repeatedly to better understand the decision-making

process (Henry & Rogers 1960; Christina et. al 1982). These studies have provided

important insight into the way the brain processes, decides and plans motor tasks.

Reaction time has been further broken into multiple types that depend on multiple

variables such as the number of stimuli to choose from and the number of movement

options. As early as 1885, scientists understood that the number of possible

responses/stimuli caused an increase in reaction time (Woodworth, 1938). A widely

15



known explanation of this effect was provided by Hick (1952) and Hyman (1953) which

states that choice reaction time is linearly related to the log of the number of stimulus

alternatives. This finding gives powerful insight into the way the brain interprets signals

from the environment and uses them to decide on the appropriate response. Henry and

Rogers (1960) discovered a similar relationship with task complexity instead of stimulus

alternatives. They saw an increase in RT with respect to task complexity. These findings

suggest the increase in reaction time is due to an increase in time needed to plan and

program the movement. Both Hick and Hyman and Henry and Rogers used reaction time

to provide significant information into the neural pathways of the brain without the ability

to measure them directly.

An additional method commonly used to assess a participant’s ability to perform or

learn a skill is by measuring performance errors (Henry, 1974: Patrick, 1971). Successful

performance of a motor task may require the correct application of speed, timing, force,

accuracy, or any combination of them all. There are multiple techniques of measuring

error such as absolute error, constant error, and variable error, which can be used to detect

the participant’s bias or inconsistency with respect to certain performance outcomes.

These approaches can help the researcher to understand any connections that may exist

between specific types of error/outcome and physical performance aspects (such as too

16



high or too low) as well as possible causes of the error. With this knowledge, researchers

can better understand the processes of motor execution that are most difficult and why.

A third method commonly used to measure movement and motor control is to

measure the characteristics of movements with the use of kinematics. Kinematics is the

study of the geometry, pattern, or form of movement with respect to time (Hall, 2003).

This type of performance measure often uses tools such as cameras and motion analysis

technology to provide information on the characteristics of movement. Commonly

measured aspects are joint or limb velocity, displacement and acceleration (Kennedy et al,,

2015; Enoka, 2002). This can be very beneficial when attempting to understand specific

movement characteristics and how they may change with training.

Neurological Measures

Despite the fact that scientists have been studying motor control since the late 1800s,

measuring motor learning and control on a neurological level has mainly been developed in

the last century. These developments have greatly impacted our realization of the events

occurring in the brain that result in physical movement. The most familiar means by which

we can study the neurological patterns of the brain are divided into two categories:

invasive and non-invasive techniques. Two examples of invasive techniques that have been

17



employed to study motor control will be discussed in this section as well as three

commonly used non-invasive measures.

Although generally limited to animal studies, intracellular recordings are an example of

an invasive method that has been used to understand the brain and movement. With this

technique, a sharp micropipette is inserted into the brain and used to measure intracellular

electric potentials during the planning and execution of movement. Intracellular recording

measures were among the first to clarify the roles of the basal ganglia and cerebellum in

the planning, control and learning of movements (Connor & Abbs, 1991; DeLong, 1972;

Gilbert & Thach, 1977). Another invasive technique restricted to animals is the study of

lesions and ablations. These two methods involve either cutting out or damaging certain

structures in the brain, respectively. Fritsch & Hitzig (1870) used this method in their

pivotal discovery of the topographical motor map and development of the motor cortex

mentioned previously. These findings were quite significant and contributed greatly to the

area of study. However, due to their highly invasive nature, the techniques of using lesions

and ablations to study the motor cortex are not commonly practiced by many motor

control scientists.

Non-invasive methods are more commonly practiced in today’s study of motor learning

and control. They provide clear data of brain functions, yet are not harmful to the

18



participants. Three examples of these techniques that have made large impacts on the

study of motor control are positron emission tomography (PET), functional magnetic

resonance imaging (fMRI), and electroencephalography (EEG).

Started by a group of scientists in the 1970’s, PET has proven to be an effective

method to view the neurological elements involved with motor processes (Oldendorf,

1980; Grafton et al.,, 2002; Ghatan et al.,, 1995). PET is obtained by injecting radioactive

positron-emitting isotopes into the blood stream, which then can be tracked by a

computerized reconstruction procedure to create a tomographic image. Different

radioisotopes are used to identify specific areas of the body and, when used in motor

control studies, can demonstrate specific areas associated with certain functions. Among

the first to use this method in motor control were Ghatan and colleagues, who used PET to

see motor cortex activity during perceptual motor tasks and navigation plans (Ghatan et al,,

1995). PET has been used in years since to study many other areas of motor control

including neurodegenerative diseases and sequence learning (Grafton & Ivry, 2002;

Grafton, Hazeltine and Ivry, 1995; Bohnen et al,, 2014; Loane & Politis, 2011).

An additional non-invasive method of measuring the brain is with the use of functional

magnetic resonance imaging (fMRI). This technique measures changes associated with

blood flow in the brain to understand the neural activation of a task. fMRI does this by
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generating a series of images of the brain taken in sequence and statistically identifying

differences that may exist between each image. The spatial precision of fMRI is superior to

many other brain imaging techniques and thus has been a benefit in the study of motor

learning and control (Rose & Christina, 2006). This ability has been useful in many areas

including the identification of neural structures involved in the acquisition and retention of

motor skills (Coynel et al., 2010; Karni, 1996). While in the MRI machine, the participant

must stay relatively still, and thus the motor skills performed while collecting fMRI data

must be rather simple in nature. This drawback of fMRI has limited its ability to study more

complex movements. However, fMRI has been greatly helpful to the study of motor

imagery. Gerardin et al. (2000) used fMRI to show similar neuronal activity in the motor

cortex, basal ganglia and cerebellum during both real and imagined movements. This

finding has sparked many other studies using fMRI to understand the neural activity of

motor imagery (Guillot et al., 2008; Chen et al,, 2016; Wang et al., 2014). Aside from motor

learning and imagery, fMRI is beneficial to many other areas of study with its superior

spatial precision. However, it is not as temporally precise as other methods such as

electroencephalography.
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PART III: Electroencephalography

Electroencephalography (EEG) is a neurological technique commonly used to measure

motor learning and control. With the use of electrically conductive electrodes placed on

the scalp, EEG measures electrical currents generated by the brain that reach the scalp

surface. Although EEG lacks the spatial resolution of fMRI, EEG is superior in temporal

resolution taking up to 20,000 samples per second from each electrode. This ability has

made EEG a dominant tool used to identify the neural networks activated during the

execution and planning of motor skills. The following section will be dedicated to the

explanation of EEG and how it can be used to measure the planning and execution of motor

tasks.

History of EEG

In the mid 19t century there was a great amount of excitement surrounding the

electrical activity of the body. The study of electricity as a whole was a very young science

and, as described earlier, man’s understanding of the nervous system was still developing.

The contention between Luigi Galvani and Alessandro Volta had fueled the discovery of

electrophysiology but the concept of independent nerve cells would not be understood for

a few more years (Brazier, 1961; Mauro, 1969; O’Leary & Goldring, 1976). In 1848, Dr.

Emil du Bois-Reymond published a study that laid the foreground of our understanding of
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the action potential (Du-Bois-Reymond, 1848). Du Bois Reymond was able to record a

negative variation from excited peripheral nervous tissue that he defined as, “muscular

current.” This current is an essential concept that makes electroencephalography possible.

It was Du Bois Reymond’s success in measuring current from a peripheral nerve

that sparked an idea for Richard Caton in 1875 (Caton, 1875). Caton concluded that if

currents could be measured in the periphery, it must be possible to measure currents

directly from the brain. Caton put this idea to work with an oxyhydrogen lamp shown on

the mirror of a galvanometer and two electrodes placed at different points on the surface of

an animal brain. This process made it possible to see small currents passing through the

multiplier. From this experiment and following experiments done by Caton, it was

discovered that electric current can be measured at the brain level, and may have a relation

with specific movements.

The study of EEG continued to be developed by many researchers across the globe

but it was not for another 40 years that developments towards a successful EEG would be

made. In 1913, a Russian scientist named Vladimir Vladimirovich Pravdich-Neminsky

published the first images of electroencephalograms measured from the unopened skull of

a dog (Pravdich-Neminsky, 1913). In this early EEG recording, Pravdich-Neminsky

recognized electrical oscillations that varied in frequency from 12-20 per second, all the
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way up to 35 per second. These frequency bands were very similar to the alpha and beta

bands that would be described by Hans Berger in later years.

In 1929, a young German psychiatrist named Hans Berger was the first to record

electroencephalogram in human subjects (Berger, 1929). Using platinum wires as

electrodes, Berger identified and named the frequency bands of alpha and beta and

witnessed changes in their activity caused by eye opening, painful stimuli, loud noises, and

mental effort. Since Berger’s discovery, scientists have combined EEG results with a firm

knowledge of the nervous system to further understand the many underlying functions of

the brain.

The Neurophysiology of EEG

The collected EEG data appears in waveforms. These waveforms represent electric

currents measured by the electrodes at the scalp surface. The majority of these currents

are generated from the extracellular field potentials of millions of nerve cells as they

communicate through specific neural processes of the brain. This section will provide a

brief background into the neurophysiological processes involved in these currents in order

to best understand and interpret the collected EEG data.
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Generation of an action potential

The simplest unit of the central nervous system is the nerve cell. It is the

communication between these cells that allows all human function. This communication is

made possible through a small electrical signal called an action potential. The currents that

make up an EEG signal result from a chain of events that begins with the action potentials

of many nerve cells. The generation of an action potential begins with many protruding

branches called dendrites reaching out from the cell body of a neuron in search of the axon

terminal branches of surrounding neurons. The space between the terminal branch of the

relaying neuron (known as the pre-synaptic neuron) and the dendrite of the receiving

neuron (known as the post-synaptic neuron) is known as the synapse or synaptic gap. The

pre-synaptic neuron releases neurotransmitter into the synapse, which then binds to a

ligand-gated ion channel specific for that neurotransmitter. Once the neurotransmitter is

bound, the channel opens and, due to a concentration gradient of sodium ions, these

positively charged ions rush into the intercellular space of the neuron and by result, slightly

raise the membrane potential of the nerve from its resting point of -70 mV. If this channel

is acting in solitude, nothing will happen and the cell will return to resting potential.

However, if many ion channels open simultaneously, the depolarization will summate to

the threshold point of -55 mV. Once the membrane potential hits the threshold of -55 mV
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this triggers the opening of the voltage-gated ion channels of the axon at the neuron hillock

to open and sodium enters at a very fast rate. This generates an action potential that then

travels the length of the axon to the axon terminal and prompts the exit of

neurotransmitter filled vesicles into the synaptic gap to be received by other post-synaptic

neurons. When sodium enters the axon it causes the membrane potential of the cell to rise

to roughly +30 mV. Upon reaching this potential, potassium channels then open and allow

potassium to leave the cell, repolarizing the cell in effort to restore resting membrane

potential.

The action potential traveling down the axon of the neuron creates an electric

current. However, it is not this current that the EEG signal represents. The currents

generated by action potentials inside the axon are impossible to track, due to the insulating

myelin sheath and the simultaneous firing of surrounding neurons that cause the currents

to cancel out. The EEG signal comes from the electric dipoles that result from the action

potentials of many neurons in synchrony.

Electric Dipoles and EEG measurement

At the beginning of the action potential generation process, ligand-gated ion

channels are opened. When these channels open, the extracellular space that is populated

by positively charged sodium ions, due to the concentration gradient, becomes much more
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negatively charged because of the sudden vacancy of these positive sodium ions. This

extracellular negativity is known as the sync. Later in the process, the action potential is

created. As a result, the membrane potential reaches +30 mV and the voltage gated

potassium channels open. This causes a rapid outflow of positively charged potassium into

the extracellular space and results in a much more positively charged extracellular space in

the area of the axon terminal. This extracellular positivity is known as the source. The

combination of the sync near the cell body and the source near the axon terminal creates a

very small magnetic dipole. When this process involves many millions of neurons, it

generates a magnetic dipole large enough to trigger an electric current that can be

measured at the scalp level. It is these currents that create the different waveforms of the

EEG signal.

EEG and Waveforms

Neurons are not able to continuously produce action potentials the way that a fire

hose delivers water. After an action potential has traveled down an axon and caused the

release of neurotransmitter, neurotransmitter will not again be released until the firing

neuron has had an opportunity to repolarize, hyperpolarize and depolarize once again. The

speed of this process and the firing rate of a neuron depends on its location and what

networks it is involved in (Adrian & Mathews, 1934; Van Wijk et al.,, 2012). These diverse
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firing patterns cause distinctive wave oscillations observed in the EEG signal and can be

divided into six groups: delta, theta, alpha, mu, beta and gamma. The following paragraphs

will briefly discuss each of these wavelengths.

Delta waves are the slowest waves and have a duration of .25 seconds or longer.

This implies a frequency band of 0-4 Hz. Delta waves are mostly generated in both the

thalamus and cortex and are commonly found during sleep and anesthesia (Walter, 1936).

Theta waves oscillate at a frequency of 4-7 Hz and are commonly found in the hippocampus

and cortex. Theta waves have generally been associated with learning and recognition

tasks as well as in spatial navigation (Cornwell et al, 2008; Raghavachari et al., 2001)

However, In a more recent study, theta oscillations were used to locate activity in the

anterior cingulate cortex during error processing of motor behaviors (Arrighi et al., 2016).

The frequency band above theta is known as alpha and is best seen in a relaxed,

awake state with eyes closed. It was the alpha band that Hans Berger first saw in his early

EEG studies (Berger, 1929). Alpha frequency covers the span of 8-13 Hz. Classic alpha

activity is said to originate in the visual cortex but there are also rhythmic activities within

the alpha band found elsewhere in the cortex. The mu rhythm (10-12 Hz) is a sub-

frequency band within alpha that is commonly associated with motor learning and control

(Pfurtscheller et al., 2006; Tangwiriyasakul et al., 2013; Yi et al.,, 2016). It is found at its
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highest power over the sensorimotor cortex while the subject is in a state of muscular

relaxation (Schomer & Lopes de Silva, 2011). Pfurtscheller and colleagues confirmed this

observation in 2006 (Pfurtscheller et al., 2006). During hand motor imagery tasks, the mu

amplitude above the hand area of the motor cortex decreased. However, the same area

showed an increase in mu amplitude during foot or tongue motor imagery and hand

imagery was absent providing further evidence that the mu rhythm plays a role in the

control of movement. Houdayer (2016) was able to show neurophysiologic evidence of

motor learning in the mu rhythm by tracking a change in this frequency band following two

weeks of piano training. Due to a proven role in movement, the mu frequency band within

alpha is often analyzed in studies involving motor learning and control.

Following alpha and mu, is the beta frequency band (14-30 Hz). Beta is generally

associated with motor planning and control and is often weakened during motor activities.

Such was the case with Jurkiewicz et al., (2006) as they observed a peak in beta amplitude

immediately following a finger movement. It is also common for changes in beta amplitude

to be seen in greater movements involving many joints and muscle groups. This denotes a

role in movement coordination and control. Wagner and colleagues (2012) confirmed this

role as they attempted to determine the cortical activity in subjects with robotic assisted

walking. Their results showed a depression of both mu and beta activity while participants

28



actively tried to move their legs with the robot. Participants doing the same task, but

instead passively allowing the robot to move their legs showed the opposite in mu and beta

amplitude. The next frequency band, gamma, also followed the same pattern in Wagner’s

robotic walking study.

Gamma waves are classified as anything above 30 Hz, with the assumption that all

frequencies behave the same after 30 Hz. However, this concept was recently contradicted

by Seeber and colleagues (2015). They observed a difference in amplitude direction in high

and low gamma frequencies. This has sparked ongoing studies into possible functional

differences in these higher frequencies. Gamma waves are currently believed to be

involved with movement coordination, increased focus or attentional demand and the

binding together of populations of neurons for the purpose of performing a certain

cognitive or motor task (Schomer & Lopes da Silva, 2011; Murthy & Fetz, 1992). The effect

of attentional demand on gamma power was shown by Wagner (2014) who had

participants walk with robot assistance on a treadmill while being shown a virtual

environment in which they were walking without assistance. Participants in the virtual

environment condition had a decrease in beta and gamma power compared to two control

groups not involved with the virtual environment. These findings confirm the concept of

the gamma bandwidth participating in the cognitive demands of motor tasks.
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The difference in functionalities in these waveforms can provide important insight

into what is happening inside the brain as it performs different actions. With this

knowledge, motor control researchers have developed many techniques to learn more

from the EEG waveforms resulting from motor activities (Wagner et al., 2012; Castermans

et al., 2014; Babiloni et al., 1999; Pfurtscheller et al., 2003).

Methods of Collecting EEG Data with an emphasis on motor learning and control

EEG is a tool that can be used in many ways. As explained above, there are many

techniques of using EEG that can be employed to analyze the EEG signal. Certain of these

techniques have proven to be particularly beneficial in the realm of motor learning and

control. The following sections will give a brief insight into the differences of these

methods and give examples of how they have been employed by researchers in the field.

1. Event Related Synchronizations/De-Synchronizations

The networks of the brain involved in sensorimotor processing and control involve

many millions of nerve cells that oscillate together primarily within the frequencies of the

theta, alpha, beta and gamma bands (>4 hz). The power of these frequencies is dependent

on the synchronization of the neural networks involved and the many millions of nerve

cells that comprise them. When a demand is placed upon the brain, such as a necessity for

greater attention or a physical movement executed by the motor pathway, these neural
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networks decrease in synchrony as they begin to fire in many different directions and

rhythms to respond to the new demand. This suppression of nerve synchrony in response

to an outside event is known as an event-related desynchronization (ERD). The opposite

effect, an increase in frequency amplitude, is known as an event-related synchronization

(ERD) (Pfurtscheller and Lopes de Silva, 1999). The observance of ERDs/ERSs has shown

that voluntary movement results in a desynchronization in the upper alpha and lower beta

bands, localized close to sensorimotor areas (Babiloni et al, 1999). Research using

unilateral upper limb movements with right-handed individuals has shown that this

desynchronization begins in the mu wave band about 2 s prior to movement onset on the

contralateral side. As the movement initiation draws closer, the desynchronization

becomes bilaterally symmetrical immediately before movement execution (Pfurtscheller

and Aranibar, 1979; Pfurtscheller and Berghold, 1989; Derambure et al., 1993; Toro et al,,

1994; Stancak and Pfurtscheller, 1996b; Leocani et al, 1997). ERDs/ERSs have been

observed to find many significant findings in motor control and are thus regularly

monitored in EEG studies.

2. Event Related Potentials

Another event-related method in EEG studies is the measuring of the event-related

potential (ERP). ERP is defined as the electrical activity that is triggered by the occurrence
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of particular events or stimuli (Schomer & Lopes Da Silva, 2011). Commonly used forms of

stimuli involve sensory events such as visual cues, auditory signals or somatosensory

stimuli. These electrical changes are ever so slight and too small to observe in a single trial.

In order to visualize and observe the ERPs, all trials must be layered on top of each other

and averaged together. This allows for the removal of signal that is not involved with the

stimulus response, as well as the negation of unwanted artifact due to muscle activity or

eye movement. The result of this process is a single waveform from each channel that is

time locked to the stimulus event. When used as a research tool, ERPs have been very

helpful in understanding the timing of neural activity generated during cognitive processes,

as well as gain a better knowledge of the cortical distribution of specific neural functions

(Toga & Mazziota, 2002). General characteristics of the ERP show positive and negative

variations at specific periods after or before the movement. These variations have been

used in many studies to understand mental workload, information processing, and motor

planning (Falgatter et al., 2000; Reitschel, 2014). Rossini and colleagues (1989) used ERPs

to identify a specific difference between patients with Parkinson’s disease and a control

group of healthy individuals. The difference was seen in a component of the ERP, 30 ms

after the stimulus was given. Names of these ERP components are given due to their

direction, positive or negative, and either their latency from the stimulus or their order
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from the stimulus. Thus, the component seen by Rossini was named the N30 wave (i.e. N30

is in the negative direction and 30 ms following the stimulus). In the parkinsonian patients,

the wave component was absent in the frontal electrode sights specifically over the

supplementary motor area (SMA). This information was used to better understand the

network connecting the basal ganglia and the SMA. This early work with Parkinson’s

disease using ERPs has sparked many similar studies including the work of Solis-Vivanco et

al. (2015) who identified an ERP component with amplitude that correlates with

Parkinson’s disease severity. Due in part to its timely precision, the mentioned studies

have shown the ERP to be effective in better understanding the processes involved with

stimulus response and motor planning.

3. Event Related Spectral Perturbations

Although the ERP is effective in tracking specific reactions to an event by the time-

locked EEG data, it is ineffective in reporting changes in wave band power. Event related

spectral perturbations (ERSPs) are a way in which this is done. By averaging the amplitude

of all trials time locked to the stimulus event, it makes it possible to see the changes in

frequency power as the brain reacts to the event. The 2-dimensional image that is

produced allows researchers to localize a specific area involved in the processes being

studied and compare the image across study conditions (Makeig, et al., 2004). ERSPs have
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been utilized in many ways to identify synchronizations and de-synchronizations in

different wave frequencies in response to certain stimuli (Brooks & Kerick, 2015; Rossi,

2014; Li et al, 2011; Chen et al, 2013). ERSPs are particularly beneficial in studies

involving mental workload (Brooks & Kerick, 2015) and motor imagery (Chen et al,, 2013).

4. Movement related cortical potentials

The movement related cortical potential (MRCP) is a slow negative shift in the EEG

recording that is observed around 2 seconds prior to the initiation of movement and has

been measured to develop the understanding of the nerve pathways that govern movement

initiation (Wright et al.,, 2011). It was Bates in 1951 (Bates, 1951) that first attempted to

identify this potential change in the cortex over the precentral gyrus prior to the onset of

movement. Bates was unsuccessful in this attempt but he was successful in demonstrating

the use of EEG simultaneously with EMG. Kornhuber and Deecke (1965) were inspired by

the methods of Bates and essentially replicated his study with a simple finger movement

task instead of a grip task. A negative potential in the lower frequency was shown roughly

a second prior to movement initiation. Kornhuber and Deecke named this potential the

Bereitschaftpotential (BP), which has often been called the readiness potential. Further

studies of the Bereitschaftpotential potential helped to gain a greater understanding of this

wave and it was discovered that the readiness potential was a component of the greater
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MRCP. Recent studies have shown that MRCP initially starts in the supplementary motor

area and makes its way into the premotor cortex and shortly thereafter into the primary

motor cortex (Shibasaki, 2012). This discovery has helped to form our understanding of

the planning role of the supplementary motor area in voluntary movement and the

usefulness of MRCPs in measuring motor control.

5. EEG Coherence Analysis

EEG coherence is a method of gathering EEG that reflects functional connectivity between

brain regions. Previously discussed methods have measured differences with respect to

time or waveband, EEG coherence analysis measures the phase consistency between pairs

of signals in each frequency band (Nunez et al., 1997; Shaw, 1983). Two examples of how

this method has been used are to determine differences in the activity in the brain with

respect to separate cerebral hemispheres (Wheaton et al,, 2008; Kelly et al., 2015) and

regional connectivity involved in learning (Wu et al,, 2014).

6. Principal and independent component analysis

Amid the collected EEG data are many different components that may not all stem

from a source inside the head or may be from brain regions unrelated to the task. These

unwanted components, known as artifacts, can come from movement of the electrodes,

muscle or eye movement, line noise and many others. The raw EEG data is put through a
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detailed protocol to filter these unwanted aspects of the signal from the brain waves to be

measured. This review will not cover this process in depth, however with respect to EEG

studies of motor control, PCA and ICA are of prime importance due to their dynamic nature

and will be briefly described.

The measurement of brain activity with only one electrode would serve no purpose

due to many events happening in the brain at one time. The collected brain signal can be

related to the ripples that result from dropping a rock in an otherwise calm pond, greater

activity is seen closest to the signal and as the signal travels outward it becomes less

extreme. With the use of many electrodes and computer algorithms designed to compute

activity across all the electrodes it is possible to locate specific regions as the source of the

observed activity. This is made possible by methods of analysis known as principal

component analysis (PCA) and independent component analysis (ICA). As a general

statement, fMRI is a more accurate technique for locating specific sources of brain activity.

However, with recent developments in PCA and ICA, EEG is gaining ground in the

conversation of source location. PCA is a method used to remove variance in the signal that

is unwanted and irrelevant to the study (Skrandies, 1989; Kayser & Tenke, 2005). PCA first

determines the maximum amount of data variance and then works backwards towards the

maximum amount of residual variance determined by the user. This is particularly useful
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in extracting components of an ERP that are due to a difference in condition (Schomer &

Lopes Da Silva, 2011). The main purpose of ICA is to decompose the signal as a whole into

individual components (Makeig et al., 1997; Delorme et al., 2007). In the example with the

rock thrown into a pond, imagine many rocks are being thrown into the pond

simultaneously. ICA would work to take the measurements from all the ripples and locate

every rock’s location in time and space that it first splashed into the pond and to remove

any ripples not due to the rocks. This tool is particularly helpful in studies collecting EEG

simultaneous with physical movement. The movement causes artifact in the signal that can

overshadow the underlying brain waves. ICA is an effective tool that has been used to

remove this noise without affecting the brain activity underneath and has allowed for the

gathering of EEG during complex body movements (Wagner et al,, 2016; Gwin et al., 2011;

Bulea et al., 2015; Castermans et al., 2014; Bradford, Lukos & Ferris, 2016).

Part IV: Benefits of Studying Motor Systems with EEG

Introduction

As described previously, EEG can be a very helpful tool to better understand the

inner working of the brain. It can help to identify and observe specific regions of the

sensorimotor cortex and measure the oscillations and electric potentials that are involved

with the planning, control and execution of motor tasks. EEG by itself, however, is no more
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than a tool and is useless without the correct application. This section will focus on ways

researchers have utilized the EEG techniques discussed in this review to provide useful

knowledge benefiting the study of sports and human performance as well as the study of

sickness, disease and injury.

EEG in Sport and Athletic Performance

In an age where improving sport performance is of great interest, studying the

brain’s involvement in athletic performance has received much attention in recent years

(Ofori, Coombs & Vaillancourt, 2015; Chuang et al., 2013; Zhu et al.,, 2015). However, a

regular limitation to this area of study has been the inability to monitor the brain while

sport related skills are performed. Notwithstanding, many techniques with EEG have been

developed to compensate for this limitation and continue to determine the

neurophysiology of successful athletic performance (Thompson et al., 2008). The following

section will discuss common methods to overcome this limitation as well as frequent study

design techniques used to understand the brain activity involved with sport and

performance.

An important technique used by electroencephalographers to study the neural

pathways involved in sport performance is motor imagery. This approach avoids the

dilemma of movement affecting the EEG signal yet still allows for the monitoring of neural
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processes involved with movement. A study done in 1990 set the stage for motor imagery

by showing changes in mean alpha band frequency as participants imagined themselves

swimming a distance of 100 M (Beyer et al., 1990). Since then, multitudes of EEG studies

have contributed to the understanding of motor imagery and its role in physical

performance (Cebolla et al,, 2015; Wilson et al,, 2015). Cebolla et al., (2015) used ERPs, and

ERD/ERS to show the effects of an imagined ball throw on brain activity. These findings

provide important insight for the use of motor imagery with athletes and its ability to be

used as a practice method to benefit athletic performance.

An additional method of using EEG to monitor motor pathways involved with sport

performance is to identify characteristics of a sport movement and gather EEG while only

portions of the movement are being executed (Ofori et al., 2015; Pastotter et al., 2012).

Ofori and colleagues exemplified this practice in 2015 while studying tennis serves and

other overhead ballistic movements. Ofori et al. used event related spectral perturbations

(ERSPs) and a ballistic arm rotation task to discover a correlation between the theta band

power of the left motor area and contralateral arm acceleration (Ofori et al., 2015). These

findings provide significant insight into the wunderlying neural framework that

characterizes a successful tennis serve as well as give implications to be able to do the same

in many other sport related tasks.
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The final method of researching EEG during sport and athletic performance has only

been possible in recent years. Although the practice of gathering EEG during gross body

movements does produce movement artifact, recent studies have been successful in

removing these artifacts and observing the neural activity underneath. This has been made

possible with the use of a specific data analysis process that involves recently developed

algorithms. Gwin et al. (2010) recorded EEG while participants ran and then clearly

explained a method to remove the movement artifacts from the EEG data. These methods

have since been repeated to measure the neural pathways involved with running at

different speeds (Bulea et al,, 2015; Lisi, Morimoto, 2015), avoiding obstacles while walking

(Wagner et al,, 2016), walking at different levels of incline (Bradford, Lukos and Ferris,

2016), and the maintenance/loss of balance during walking (Sipp, Gwin, Maekig & Ferris,

2013) among many more (Bertrand et al., 2013; Castermans et al., 2014; Kline et al., 2015;

Wagner et al, 2012; Uriglien and Garcia-Zapirain, 2015; Wagner et al, 2014; Lisi and

Morimoto, 2015; Sipp et al,, 2013). This new ability to measure the brain as complex

actions are being performed may allow us to see how the brain coordinates the kinematic

and kinetic skills across multiple joints and limbs simultaneously. This ability sparks

multiple directions for possible science implications but could indeed help to create

different training protocols towards specific athletic performance goals.
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The above paragraphs provide exciting information as to how these brain regions

can be measured and monitored. However, with these methods, how does one apply them

to develop effective study designs that help to understand the brain activity in sport and

athletic performance? A common method of addressing this question is to make

comparisons of EEG profiles. A common comparison made by researchers is to compare

the EEG data from novices to that from experts. Doppelmayr et al. (2008) compared novice

rifle shooters to experts. In rifle shooting, a calm composure and steady hand is key. This

was shown using spectral analysis to show an increase in frontal midline theta 3 seconds

prior to shooting for experts that was absent in novices. These findings denote a greater

ability to focus attention in experts vs. novices.

Another common comparison made in EEG data is to compare successful trials to

unsuccessful trials. Chuang, Huang, and Hung (2013) used this technique effectively to

show that a higher frontal midline theta power was common in the preparatory stage of

successful free-throw basketball shots than in unsuccessful free-throw shots. This study

gives neurophysiological evidence for the need to control arousal and attention.

In summary, electroencephalography is an incredible tool for the research of sport

and athletic performance. It gives researchers the ability to monitor similarities between

imagined and executed motions. It also allows for the measuring of neural activity during
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the execution of both simple and complex motions. These new methods, and the research

that applies them will benefit athletes and coaches as they strive to improve sport

performance as well as researchers as they strive to understand motor dysfunctions of the

CNS.

EEG in Motor System Dysfunctions

Many people are affected by dysfunctions of the central nervous system or injuries

that have impacted its function. EEG has been a helpful tool for researchers striving to

better understand a number of these dysfunctions and develop effective methods of

assisting the populations that they affect. The following section will briefly explain a few of

these cases in which EEG has proven to be helpful and give specific examples of each. The

cases discussed will be: mild traumatic brain injury, Parkinson’s disease, strokes, and the

development of brain computer interfaces designed to benefit these populations.

Brain Injury

It is reported by the Center for Disease Control and Prevention that 1.7 million

people every year suffer from traumatic brain injury (TBI) (CDC, 2010). These injuries

come from a number of areas including car crashes and work accidents; however, a type of

head injury that has received a large amount of attention in recent years is injuries

experienced during sport participation known as mild traumatic brain injuries (mTBI) or
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concussions. Recent studies have begun to discover the long-term affects that result from

these head injuries (Guskiewicz et al., 2005; Lehman et al., 2012; Randolph et al., 2013).

This has fueled current research on the neurophysiological symptoms of head injuries, and

training programs to help improve them. One of these symptoms, oculo-motor based

problems, was addressed by Yadev and colleagues in 2014. Yadev used visual evoked

potentials (VEP), a type of ERP, and alpha frequency to investigate the efficacy of an

oculomotor vision rehabilitation (OVR) program. It was shown that six weeks of OVR was

effective in increasing both the VEP amplitude and alpha band power, thus showing that

OVR can help to treat mTBI symptoms (Yadev et a., 2014).

Another branch of traumatic brain injury research uses EEG to assist in the

assessment and classification of mTBI. Cao, Tutwiler, and Slobounov recognized that many

athletes were returning to play before neurophysiological symptoms had ceased and

designed an algorithm to be applied to EEG data isolating band frequencies that may still

show signs of mTBI effects (Cao, Tutwiler & Slobounov, 2008). Slobounov et al. (2011)

provided a technique for a similar purpose that uses virtual reality while collecting EEG.

This technique uses ERSPs in the theta frequency band to assess mTBI (Slobounov et al,,

2011). Methods and research such as these will continue to use EEG to benefit the

understanding of mTBI and its long-term effects.
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Parkinson’s disease

Parkinson’s disease is a chronic and progressive movement disorder that is

associated with malfunction and death of nerve cells found in the basal ganglia of the brain.

EEG has long been a fundamental tool for scientists as they have striven to understand the

causes and underlying factors of Parkinson’s disease (England, Schwab, Peterson, 1958;

Laidlaw & Catling, 1964). In recent years EEG continues to benefit the study of

Parkinsonism as researchers study the different symptoms and neural activity associated

with this disease. Malgari et al, used EEG frequency analysis to identify specific wave

bands that are effected by dopamine replacement therapy (DRT) with hopes to understand

the impacted brain oscillations regularly seen in patients with PD (Melgari et al., 2014).

Caviness et al. (2006) researched postural tremor, and with coherence analysis, observed a

correlation in small amplitude postural tremor and corticomuscular coherence. This

finding suggests that the sensorimotor cortex has a direct role in the small amplitude

postural tremor observed in PD. Although there is much that we do not know about this

disease and many others like it, EEG has proven to be a valuable tool as researchers

address the remaining questions of these diseases.

Stroke

A stroke is the result of a blocking of blood flow to certain areas of the brain, which
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results in neural cell death. This neural cell death can happen in many different parts of

the brain and affect many of the brains functions. Although there are multiple kinds of

strokes, it is common for many to impact different brain systems that play a role in

sensorimotor control resulting in apraxia, or impaired motor activity. This can affect the

individual’s ability to execute volunteer actions and interact with their environment such

as waving goodbye or using a toothbrush. EEG has helped practitioners to isolate nerve

systems involved with these types of strokes and construct useful rehabilitation programs.

Part of this task involves further research into the way the brain coordinates praxis, or

performed action, in healthy adults which can then help to create more accurate

hypotheses related to those who have brain damage from stroke. Research using EEG has

shown that planning self-paced praxis movements begins up to 3 seconds prior to

movement initiation in the left parietal region and then enlists premotor and motor areas

bilaterally before initiation (Wheaton, Shibasaki, Hallett, 2005; Wheaton & Hallett, 2007;

Shibasaki & Hallett, 2006). This has been used to help understand specific types of stroke

and the neural sequences that they affect (Wheaton & Hallett, 2007; Wheaton et al., 2008).

Another common use of EEG in stroke research is in the development of rehabilitation

programs (Ang et al.,, 2015; Kober et al,, 2015; Sburlea et al,, 2015; Sharma et al., 2006).

EEG’s ability to localize brain activity is beneficial and allows the identification of changes
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made in response to specific training regimes. This has been used in programs involving

mental imagery with stroke victims mentally executing movements in efforts to repair the

damaged areas (Sharma et al., 2006). Ang et al. used EEG combined with a brain computer

interface (BCI) in a 4-week study that improved motor recovery after stroke for

participants with upper-limb hemiparesis. In Ang’s study, participants’ effected arm was

attached to a robot exoskeleton that was controlled by the alpha and beta frequency power

collected from 27 electrodes positioned over their frontal and parietal cortex.

These studies show many promising findings including: motor imagery can be

effective in promoting neuroplasticity following a stroke, and also, a brain computer

interface can be an effective tool for the rehabilitation and assistance of those with motor

dysfunctions.

Brain Computer Interface

Recent developments in neurophysiology have developed an approach known as

EEG-based brain-computer interface (BCI). An important goal of BCI is to use specific

features from the user’s EEG profile and translate them into signals that operate a

computer-controlled device and assist patients with motor dysfunctions (Allison et al,,

2008; Pfurtscheller and da Silva, 1999; Bell et al., 2008). Because this is a developing area
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of study, this review will not expound on BCI extensively, but two examples of its use in

motor learning and control will be discussed.

A group of individuals that can benefit most from effective BCls are those who suffer

from partial or full paralysis. In a recent study (Muller-Putz et al., 2005), a neuroprosthetic

device was applied to recognize the EEG alpha band frequency recorded while the

participant imagined himself performing a hand-grasping task with his paralyzed hand.

With only three days of training the participant was successful in transporting an object

from one location to another on the table in front of him. This research gives evidence that

a neuroprosthetic may be effective in regaining at least partial control of a paraletic hand.

Another promising study sought to increase the functionality for teraplegic patients.

Kaufmann et al, (2014) developed a BCI that allowed for participants to navigate a

wheelchair through a virtual course by focusing on specific body parts. As participants

focused on body regions representing directions of movement, the resulting ERP could be

recognized and applied to control the wheelchair’s movement. This will help many of those

with severe nervous system dysfunctions to transport themselves in a wheelchair and thus

increase independence and quality of life (Rajangam et al., 2016). These two examples of

helpful BCIs give promising evidence for their future capabilities. An increasing knowledge
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of EEG and its ability to measure motor learning and control will greatly benefit this area of

study and improve the quality of life for many with motor system dysfunctions.

Conclusion

87 years have passed since Hans Berger recorded the first EEG of a human. In the

time since, our understanding of the brain and the ways in which it plans and executes

movement have been defined. The availability of the electroencephalogram has made it

possible to monitor and measure specific populations of nerves as they communicate

throughout the cerebral cortex. With 86 billion nerve cells inside the human brain, a

perfect understanding of this organ’s ability to successfully plan, coordinate and execute

movements may not be available for years to come. However, the current knowledge has

benefited greatly from the abilities of researchers to use EEG and explain the complexities

of neurons that control human movement.
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Chapter 3: Methods

As discussed in chapter one this project will involve two separate experiments.

Both these studies have been designed and carefully planned to utilize the methods and

techniques discussed in previous chapters in order to answer specific questions filling a

void in the available literature. Chapter three will provide a brief background for each of

these studies and clearly explain the proposed methods for how the research question will

be addressed.

Part I: The Cognitive Demands of Gait Retraining: Psychophysiological Evidence for

Learned Motor Skills

Introduction

One of the most essential characteristics of motor learning is a permanent capability

to perform the skilled behavior. Changes in behavior that are easily reversed with time,

fatigue or mood are not to be considered learned (Schmidt, 1988). The ability to learn new

skills and consistently perform them is essential to all humans. Athletes that can efficiently

learn new techniques and reliably produce them are often more successful. Soldiers must

permanently learn combat operations in order to ensure the protection of themselves and

those they serve. Patients who suffer from harmful injuries rely on their ability to

permanently re-learn common movements to gain independence and quality of life. Due to



the importance of permanently learning new skills, much research has been done to

recognize when learning has become permanent.

Fitts and Posner (1967) proposed a three-stage learning model for getting motor

skills to be permanent and automatic. The first stage is the cognitive, or verbal stage. In

this stage learners strive to understand what exactly needs to be done and often have to

talk themselves through the execution of the movement. Performance is jerky and

inefficient in the cognitive stage. Cognitive demand is high in this stage and often is difficult

to perform other tasks. In the second stage, the associative stage, performance becomes

more consistent from trial to trial and only slight movement adjustments are made. Co-

contractions of competing muscle groups decreases, causing performance to appear

smooth and effortless. Certain aspects of the task become automatic and cognitive demand

decreases allowing some attention to be given to other tasks. In the final stage, the

autonomous stage, performance is automatic, very consistent and requires little to no

attentional resources. When attempting to permanently learn a new skill, athletes,

soldiers and patients strive to be in the autonomous stage of learning. For this purpose,

motor learning research has striven to develop reliable methods to measure learning as it

occurs.
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Until recent years, research has relied on performance to measure motor

learning. When performance is consistent and error free, it is easy to recognize a transition

from the cognitive stage to the associative stage. The transition from the associative stage

to the autonomous stage is more difficult to recognize. For this purpose, dual-task

performance is used to measure cognitive demand of motor skills to recognize an increase

in attentional reserve. However, in recent years, electroencephalography (EEG) has been

used to recognize an increase in the neural efficiency of motor skill performance.

Attempting to perform a new task places a large workload on the brain as additional neural

networks are recruited to accommodate the new demand. With EEG, this new workload

can be identified and tracked. As learning takes place, neural adaptations occur to create a

more efficient network to execute the task. The increase of neural efficiency can be seen in

the resulting electrical currents measured by EEG. Houdayer et al. (2016) sought to

identify EEG markers as participants learned to play piano. His results showed mu (10-12

Hz) frequency power to decrease while first performing the piano task. With time and

training, this decrease in mu power while playing was lessened although performance

improved. These results show that EEG can be used to track the neurological changes that

occur as a result of learning. However, similar to Haudayer et al. (2016), many EEG studies

track learning only for motor skills that require small minor hand movements (Reitschel et
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al, 2014; Mathewson et al,, 2012). For many patients, amputees and athletes, the motor

skill to be learned is more complex and requires more bodily movement.

Gait retraining

Many athletes, soldiers and recreational runners suffer from overuse injuries such

as stress fractures. These injuries come from the prolonged use of a biomechanically

harmful running gait that results in small bone fractures in the lower extremities. Military

recruits with stress fractures miss substantial training time that hinders their physical

fitness development and costs the military extra money for medical charges. Crowell and

Davis (2011) reported that the annual cost of Army recruits being discharged because of

stress fractures is $6.2 million. This cost, in combination with recovery times up to 8 weeks,

creates a significant problem. Stress fractures can remove an athlete from competition for

the majority of a competitive season and discourage recreational runners from continuing

to run, due to the high recurrence rate. Hauret and colleagues (2001) observed a 36%

recurrence rate for military recruits with stress fractures. With the impacts of stress

fractures as detrimental as these mentioned, there is a great need to find effective ways to

re-train these individuals to permanently alter the way that they run. An example of a

successful training protocol is provided by Willy et al. (2015). This study sought to develop

an in-field gait-retraining program for participants at risk for tibial stress fractures. They
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did this by promoting a 5-10% increase in step rate. A small increase in step rate has

shown to decrease ground reaction forces and hip adduction while running at the same

speed, and thus reduce risk factors for these types of injuries (Heiderscheit et al., 2011;

Hobara et al., 2012). An in-field training computer system was used with an accelerometer

attached to the participant’s shoe to track step rate per minute. The accelerometer synced

with a mobile biofeedback computer worn on the wrist that provided strategic feedback to

promote an increased step rate. Ground reaction forces, motion capture data and step rate

were measured at baseline, following the retraining period, and one month post retraining.

Results showed that the decrease in step rate lowered risk factors for tibial stress fracture

and step rate was maintained one month post retraining. These results give optimistic

results that the new gait had begun to become a learned motor skill. Similar to the study by

Willy et al. (2015), most gait-retraining research has used performance retention as

evidence that the new gait has become learned and transitioned into the autonomous stage

(Willy et al,, 2015; Willy et al., 2014; Crowell & Davis, 2011; Willy, Scholz & Davis, 2012;

Fitts and Posner 1967). However, brain adaptations measured by EEG would be a more

accurate indicator of permanent behavioral changes.

Until recently, obtaining EEG data while participants ran has not been possible. The

constant motion of running causes a large amount of artifact in the EEG data that
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overshadows the electrical signal from brain activity. However, Gwin, Gramann, Makeig,

and Ferris (2010) developed a strategy of data analysis to mathematically isolate and

remove these artifacts from the EEG signal that result from running. With the use of this

strategy it is now possible to gather brain activity while participants perform complex

movements such as walking and running. The purpose of this study is to employ similar

methods of data analysis used by Gwin and others in an attempt to determine the cognitive

demand of a gait-retraining program and identify evidence of motor learning throughout

the training protocol.

Since Gwin and colleagues’ 2010 discovery, there have been many studies done to

analyze the cortical activations during gait modification in walking, but, none have been

done to address these activations while running (Gwin et al., 2011; Seeber et al., 2014;

Seeber et al,, 2015; Lisi et al,, 2015; Peterson et al., 2012; Kline et al,, 2015; Haefeli et al,,

2011; Bradford, Lukos & Ferris, 2015; Bulea et al.,, 2015). Wagner et al. (2016) found, while

giving auditory cues to instruct participants to walk with shorter steps, participants

showed an increase in beta power over the prefrontal areas and a decrease in beta power

over the central midline and parietal regions. Wagner and colleagues’ results in the

prefrontal areas perhaps suggest a greater engagement of motor resources to inhibit the

accustomed full-stride action.
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Similar to Wagner et al,, many studies have shown a decrease in mu or beta power

over the sensorimotor areas in response to lower limb movement, suggesting this region to

play a large role in gait planning, initiation and control (Weiser et al., 2010; Presacco et al,,

2011; Seeber et al,, 2014; Gwin et al,, 2011; Wagner et al, 2014). In addition to these

findings in the mu and beta bands, Seeber et al. (2015) found an increase in gamma

amplitude (>30 Hz) over these regions while walking. These results suggest that this

increase may facilitate enhanced motor processing, which would likely result from an

altered running gait.

Based on previous studies using EEG to measure learning combined with recent

studies using EEG to measure neural activity during gait, it was hypothesized that while

initially learning a new gait (increasing step rate 5-10%) an increase in beta and gamma

amplitudes over the pre frontal areas would be shown in the EEG data. Such a response

would indicate that cognitive load was increased with the new task, a characteristic of Fitts

and Posner’s cognitive stage. It was further hypothesized that as a result of training, this

increase in beta and gamma would decrease, giving evidence that the new skill had become

learned and in either the associative or autonomous learning stage. Similarly, it was

hypothesized that the mu and beta band frequencies would initially decrease in amplitude

over the primary motor cortex as the brain plans, initiates and controls the new gait. In
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response to training, it is hypothesized that this initial decrease will subside and that mu

and beta power will be higher after training than in the early stages of learning. Due to

Seeber and colleagues’ findings in the gamma band over the primary motor cortices, we

lastly hypothesized that as runners increased their step rate, gamma amplitude would

show similar responses and initially increase during early skill acquisition then decrease

after training. If shown, these results would give hopeful evidence for the permanent

maintenance of an altered running gait and suggest learning to have transitioned towards

the autonomous stage proposed by Fitts and Posner (1967).

Methods

Participants

13 undergraduate student volunteers of both sexes that were currently active

runners (run at least 8 miles/week) and injury-free were recruited for this study (mean

age = 20.1; SD=1.2). All participants provided written informed consent to participate in

the study.

Procedure

Using methods similar to Willy et al. (2014), participants first attended a baseline

data collection. In order to ensure similar performance parameters for all data collections,
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fully instrumented, three-dimensional kinematic and ground reaction forces were collected

using motion capture technology (The MotionMonitor, Chicago, Illinois, USA) and an

instrumented dual force-plate treadmill (Bertec, Worthington, Ohio, USA) collected at 200

Hz and 1000 Hz, respectively. Upon entering the lab and prior to EEG cap preparation,

each participant was issued a pair of shoes for testing and attached with the proper

reflective balls for the motion capture. To acquire EEG data, a QuickCap 64-channel EEG

cap (modified 10-20 system) from Neuroscan was used with a Neuroscan SynAmps2 64-

channel amplifier from Compumedics (El Paso, TX). All data was referenced between

electrodes Cz and CPz, and grounded anteriorly to Fz. Saline solution was used to ensure

that impedence remained below 5 KQ on all electrodes prior to data collections. Prior to

collecting the baseline EEG data, participants ran at a self-determined pace for a five-

minute warm up period. After warming up, one minute of EEG baseline data was collected

as the participant ran with their preferred step rate. Using motion data from the baseline

period, the increased step rate was calculated by an increase of the preferred rate by 5-

10%. Participants were then instructed to increase their step rate 5-10% at the same

running speed measured during their baseline run. Once participants successfully

maintained a step rate within this 5% window, one minute of EEG was collected and

further referred to as the new gait data.
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Fig. 1. Participant running on the instrumented
treadmill while kinetic, kinematic and EEG data is
collected.

At the end of day 1 testing, participants were given a Garmin Forerunner70 (FR70,

Garmin Corporation, Olathe, Kansas, USA) wrist computer and a paired Garmin foot pod

that was firmly affixed to each participants’ right shoe. The foot pod is a triaxial

accelerometer that wirelessly transmits a signal (1000 Hz) to the wrist computer allowing

for the real-time calculation and recording of step rate and running pace. Participants were

shown how to use the wrist computer and instructed to wear it while completing 8 runs of

at least 3 miles. During these 8 runs, bandwidth feedback was given by the sound of a beep

from the wrist computer. The wrist monitor alerted the participant if they fell below or
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above the prescribed 5-10% step rate increase. Participants’ running data from the

biofeedback computers were downloaded periodically to assess in-field step rate and

running volume. After 8 runs were completed successfully with the biofeedback wrist

computer, the participants were released for 1 month to run on their normal running

routine. Participants were encouraged to run 3 times a week during this period and

continued to wear the wrist computer and foot pod while running but received no real-

time feedback. During this training period, the wrist computer only allowed participants to

know of their results after the run had finished if they chose to look at them.

Following the intervention protocol, participants returned to the laboratory to be

tested with exactly the same measures as the day 1 testing (e.g. kinematic, kinetic and EEG

data). After set up was completed, equipment was proven functional and a five minute

warm up period, participants ran for one minute at their preferred pace while EEG data

was collected. No step rate instruction was given. This minute of EEG data is further

referred to as the posttest data.

Data Processing

Using methods similar to those used by Gwin et al. (2010), Wagner et al. (2016),

Snyder et al. (2015), and Chaumon et al. (2015), all EEG data processing was done with

custom scripts written in Matlab 2016b (The MathWorks) using EEGLAB version 13
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functions (Delorme & Makeig, 2004). All data were put through a three-stage artifact-

reduction process (explained in figure 2) in order to eliminate noise that resulted from

running with the EEG cap. The three stages focused on rejecting artifact at the channel,

epoch and component levels.

With the purpose of testing the research hypotheses involving frequency activations

associated with learning a new gait, a power spectral density plot was calculated for each

participant in each condition. Following data processing, a mean spectral power value for

each frequency band was calculated for the brain regions of interest and plugged into a

one-way ANOVA with repeated measures (baseline data, new gait data, post test data) in

order to track changes in EEG spectral power during gait retraining stages. An alpha level

of p < 0.05 was considered statistically significant for all analyses and effect sizes were

calculated using Cohen’s d. For these effect sizes, values of 0.1 were considered small, 0.3

were considered medium and anything above .4 was considered large (Cohen, 1988).

Tukey’s post-hoc test and pairwise comparisons were calculated for all main effects and

interactions.
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Part II: Differing neural strategies in left and right-handed individuals during motor

imagery

Introduction

Many cognitive tasks that inherently do not require physical movement generate

activity in areas of the brain that are also involved in physical movement (Jeannerod, 1994;

Decety 1996; Lotze et al,, 1999; Parsons, 1995). This shared neural activity occurs as we

attempt to understand the actions of others and develop successful motor plans ourselves.

Jeannerod’s simulation theory (2001) suggests that with every overt action comes a covert

mental representation of that action. This mental representation of previously executed

movement assists us to successfully complete future motor tasks and understand the

actions of others. Frak et al. (2001) showed that while estimating the feasibility of a motor

action, participants mentally simulated themselves performing the action in order to

provide a response. Although we may not be aware of it, this ability to mentally simulate

movement is used daily as we observe, plan and execute actions. Without the capacity to

mentally simulate physical movements, we would be incapable of many essential motor

tasks such as tool use, reaching out to grasp a pen, or waving goodbye (Clark et al., 1994;

Mutha, Sainburg & Haaland, 2010).
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Mental simulation of movement without physical execution is known as motor
imagery (MI) and would not be possible without a mental representation developed
through previous experiences of performing similar actions (Schwartz & Black, 1999).
Thus, motor tasks that have been completed more regularly generate a mental
representation that can better aid in motor imagery compared to a less familiar task
(Gentilucci et al., 1998a; Takahashi et al.,, 2005). Given that hand-dominance can greatly
affect the magnitude of familiarity a motor task has for each hand, the purpose of this study
is to better understand the neural differences in right and left-handers as they mentally
simulate physical movements to assist in cognitive tasks.

Hand dominance has been shown to affect motor imagery ability (Takeda et al,
2009; Ni Choisdealbha et al.,, 2011; Gentilucci et al,, 1998b). Based on behavioral data,
many studies have shown that while mentally simulating action, participants are more
proficient while imagining action with their dominant hand (Takeda et al, 2009; Ni
Choisdealbha et al.,, 2011; Gentilucci et al., 1998b, Parsons 1987, 1994; Parsons et al,,
1995). The dominant hand is used habitually and more often for a wide range of tasks and
thus, a lateral preference is possible while mentally simulating action.

This preference for the dominant hand is also reflected in neuroimaging studies

(Parsons et al., 1995; Vingerhoets et al., 2002; Osuagwu & Vuckovic, 2014). Parsons et al.
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(1995) were among the first to show dominant laterality in the supplemental motor area

(SMA), premotor cortex (PMC) and anterior cingulate during motor imagery of an upper

extremity movement. Parsons and colleagues also reported a greater bilateral activation

of the inferior parietal lobe during MI with the dominant hand compared to its non-

dominant counterpart. In recent years, many studies have found similar results to prove an

effect of hand dominance on both the behavior of motor imagery and its neural

components (Hanakawa, 2016; Iacaboni et al., 1999; Vingerhoets et al., 2002; Osuagwu &

Vuckovic, 2014; Jeannerod & Frak, 1999; Jongsma et al., 2013).

The majority of action simulation research, as well as motor function research as a

whole, have primarily focused on right-handed individuals. Because left-handed

individuals make up 4-16% of the population, (varies by culture (Perelle and Ehrman,

1994)) most studies focus on right-handers only. It has been assumed that the left-

dominant contralateral cortical activity, which is seen in right-handers, would be identical

in the opposite right-hemisphere for left-handed individuals (Goldenberg, 2013;

Vingerhoets et al., 2012; Goble et al.,, 2009). However, this has not been proven and recent

research would suggest otherwise. Kelly, Mizelle and Wheaton (2015) showed that left-

handed individuals, while mentally simulating the use of a tool, did not show contralateral

activation in the premotor and parietal regions relative to the imagined hand, but rather
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showed a bilateral activation of both regions regardless of hand imagined. Martin, Jacobs

and Frey (2011) also reported a bilateral activity of both the parietal and premotor areas in

left-handers in a similar task. While planning a grasping motion with either hand, left-

handed participants showed bilateral activation in the ventral premotor cortex (vPMC) and

anterior intraparietal sulcus (alPS) while the right-handed group was left-hemisphere

lateralized, failing to exceed baseline activity in the right ventral premotor cortex in all

conditions. These results challenge previous assumptions and suggest fundamental

differences in the way left-handers mentally process motor-related tasks. A better

understanding of these differences will advance the current knowledge of hand dominance

and the role it plays in information processing. In addition, this work will assist in the

development of proper rehabilitation practices for individuals with disease and injury to

the brain regions involved with this essential task. Thus, more research is needed to

understand MI in both right and left-handers.

The hand laterality task (HLT) is a standard test used in research to understand the

neural and cognitive mechanisms involved with motor imagery and mental simulation

(Cooper & Shepard, 1975; Parsons, 1987; Parsons, 1994; Osuagwu & Vuckovic, 2014; Lyu

etal, 2017). In the HLT, participants are shown an image of a hand and asked to identify it

as a left or right hand. It has been shown repeatedly that while solving this task,
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participants mentally rotate a mental representation of their own hand to match the

observed hand in order to identify it as right or left (Parsons, 1987, 1994, 2001; Parsons et

al., 1995; Gentilucci et al., 1998a, 1998b; Takeda et al., 2010; Ni Choisdealbha et al., 2011).

Parsons (2003) suggests that this cognitive task is solved in five phases, i.e.,, a) visual

encoding, b) analysis of the orientation difference between the target and mental template,

c) mental rotation of the appropriate body part from the current to the target position d)

comparing the images to determine laterality and e) response execution. Many previous

studies have used spatially precise neuroimaging techniques, such as fMRI and PET, to

locate the brain regions involved in this mental task at the expense of temporal exactness

(Parsons et al., 1995; Perruchoud et al., 2016, Iacaboni et al., 1999). However, many

participants complete all five phases of the HLT in less than one second, making temporal

accuracy imperative in understanding the neural components involved.

Due to its fine temporal precision, EEG has frequently been used to understand the

temporal patterns of motor-related cognitive tasks, but has only recently been used to

evaluate the neural activity during the HLT (Osuagwu & Vuckovic, 2014; Lyu et al,, 2017;

Jongsma et al., 2013). When presented with a visual stimulus, an electrophysiological

response known as an event-related potential (ERP) can be seen in the EEG data and used

to understand the way the brain processes information (Herrmann & Knight, 2001).
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Certain components of the ERP could be helpful to understand the temporal patterns of the

phases involved in solving the HLT. The N2 (a large negative shift generated around 200

ms after stimulus onset) has been characterized with recognizing the similarities or

deviations of a stimulus from a previously developed mental template in order to give

meaning to visual stimuli (Folstein & Van Petten, 2008). Lyu and colleagues (2017)

observed a decrease in magnitude of the N2 for amputees imagining movement of their

amputated hand compared to their intact limb while completing the HLT. Interestingly, it

was also shown by Lyu and colleagues that the magnitude of decrease in the N2 was

correlated with the amount of time since losing their limb. This finding implicates that the

degree of familiarity of an action should be shown in the amplitude of N2. Thus, it is

possible that N2 amplitude may be reduced for mentally simulated actions with the non-

dominant hand. As follows, it was hypothesized that N2 would be greater over the

intraparietal sulcus area in the contralateral hemisphere for right-handed individuals as

they view right hands compared to left hands. It was further hypothesized, that the

magnitude of N2 in the same region would not differ across hemispheres for left-handed

individuals regardless of the stimulus hand laterality.

The P3 component of the ERP (a large positive shift occurring roughly 300 ms after

stimulus onset) is believed to be the most prominent ERP component sensitive to cognitive
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processing (Herrman & Knight, 2001). Considering the greater latency of the P3, it can be

expected to provide insight on the later stages of the HLT task. Based on the findings from

Martin et al. (2011), it was hypothesized that right-handers would show greater amplitude

of P3 in the contralateral premotor cortex relative to stimulus hand and that P3 would not

differ across hemispheres of left-handers regardless of hand presented. Due to its short

temporal latency, no differences were expected in the P1 (a positive shift occurring within

80-130 ms after stimulus presentation) component of the ERP.

Methods

Participants

Twelve right-handed individuals and twelve left-handed individuals aged 18 to 35

years from both sexes participated in the study. All participants were generally healthy

and had no history of neurological illness or injury. The Edinburgh handedness inventory

(EHI) was used (Oldfield, 1971) to evaluate the degree of hand dominance. The median

laterality quotients (LQ) for the right and left-handed group were 80.5 and -70,

respectively. All participants gave written informed consent before participating in this

study.
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EEG

Participants were seated in a chair and fitted with a standard 64-channel EEG

electrode cap (Neuroscan, Charlotte, NC) in the standardized 10-20 electrode configuration

to record neural activity (1000 Hz) using SynAmpsRT (Neuroscan, Charlotte, NC). The cap

was referenced between Cz and CPz, and grounded anteriorly to Fz. Electrode impedance

was brought below 5 k(s for all data collections. Eye movements were recorded with

electrodes placed above and below the left eye to capture electrooculographic (EOG)

activity. Using StimTracker (Cedrus Corporation, San Pedro, CA), stimulus onset and

participant responses were synchronized to the EEG continuous data, which allowed the

data to be epoched and analyzed.

Hand Images

In order to control for a learning effect and to promote consistent motor imagery,

pictures included hands in multiple positions, angular orientations, and visual angles.

Gentilucci et al. (1998a) suggested that unique hand postures promoted a greater amount

of mental simulation than commonly seen hand images. Thus, three levels of image

complexity were included in this study: simple images (either an open palm or closed fist),

familiar hand posture images (pointing finger, thumb up, handshake, etc.), and unique hand

images (non-recognizable, novel postures). All hand images were drawn randomly from a
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bank of 672 images (336 right-hands, 336 left-hands), consisting of a front and back image
of each hand posture in each complexity level rotated at 45° angles (fig.7a).
Procedure

Participants were seated in a chair with fingers placed on a response pad (RB-840,
Cedrus Corporation, San Pedro, CA) in order to provide behavioral responses (fig. 7b). EEG
was recorded while participants were shown randomized images of individual hands on a
47 in. (119.38 cm) visual monitor. To promote mental simulation of movement,
participants’ hands were occluded with a towel draped over their hands. Upon stimulus
presentation, participants were instructed to determine the laterality of each hand and
respond by pressing the corresponding button on the response pad as fast and accurately
as possible. To monitor behavioral data, response times and response accuracy were
recorded. The inter-stimulus period contained a black fixation cross, located in the middle
of the screen that lasted 3 seconds (fig. 7c). All images were preceded by a visual warning
cue varying between 1.5-3 seconds prior to picture presentation. Once the image was
presented, if participants did not respond in 3 seconds, the inter-stimulus fixation cross
would appear and continue into the next trial. Data collections consisted of four blocks of

60 images each (240 trials total).
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Figure 3. a) All images presented in a randomized 45° increment. b)
Diagram of respond pad on which participants indicated if the presented
hand was a left or right hand. c) Each hand image was preceded by an
interstimulus fixation cross and pre-stimulus warning cue.
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Figure 4. Components of interest in the
visual event-related potential
Analyses

Behavioral data
In order to monitor response time and accuracy differences between left and right-handers,
a one-way multivariate analysis of variance (MANOVA) was calculated in IBM SPSS
Statistics 22. Alpha was set at p =.05 as the critical level of significance.
EEG Data:

Data from each participant were visually analyzed to locate and remove any prominent

artifact resulting from eye and muscle activity. Afterwards, using custom scripts written in
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Matlab 2016b (The MathWorks) and employing EEGLAB functions (Delorme & Makeig,

2004), all data were filtered using a 4-35 Hz band-pass filter, re-referenced to the average

of M1 and M2 (left and right earlobes), and epoched to include 1 second before and after

picture presentation for each stimulus condition. Based on the unique EEG marker

generated by StimTracker for each picture presentation, epochs were sorted into each trial

condition (simple image-right hand, unique image-left hand, etc.) for each participant. To

reduce the effect of inter-subject variability in the amplitude of the evoked responses, the

data for the 12 subjects in both groups were resampled to the average number of trials that

all participants saw each stimulus condition (Mizelle & Wheaton, 2010, 2011). After

resampling, trials in each condition were averaged, individually, for all participants of each

group to result in a 64 (channels) x 2000 (time points) data matrix for each participant in

each condition. Based on the prominence of the negative shift of the N2, peak values for the

three ERP components were identified in the data and used for the remainder of data

processing.

In order to test the hypotheses of laterality differences in left and right-handers, a

custom Matlab script was created that compared the peak values of an ERP component in

each of the 62 electrodes from all participants of a group to its contralateral counterpart (t-

test) (Mizelle et al.,, 2011). In this script, if a lateral preference exists across hemispheres
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that is statistically different (p < .05), the corresponding brain region is colored over in a

lateralization head plot. Different preferences of hemisphere between right and left-

handers become evident in the side-by-side comparison of each group’s head plot.

To further understand differences in the brain activity involved with motor imagery

in right and left-handed individuals, a one-way multivariate analysis of variance (MANOVA)

was conducted for the brain regions of interest to determine the effect of stimulus type on

the ERP wavelet magnitudes in these regions. An alpha level of p <0.05 was considered

statistically significant for all analyses and effect sizes were calculated using Cohen’s d and

partial eta squared. For Cohen’s d, values of 0.1 were considered small, 0.3 were

considered medium and anything above 0.5 was considered large (Cohen, 1988). For

partial eta squared, values of .0099, .0588, and .1379 were considered small, medium, and

large effect sizes, respectively (Richardson, 2011).
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Chapter 4: Results and Discussion

Part I: The Cognitive Demands of Gait Retraining: Psychophysiological Evidence for
Learned Motor SKkills

Results

Due to excessive artifact, the data from two subjects were excluded from the study. In

addition, two participants failed to report back for post testing and thus, the results include data

from 11 subjects for the baseline and new-gait stages and 9 subjects for the posttest stage. To test

the three research hypotheses, a one-way repeated-measures ANOVA was conducted. In the

ANOVA, the factor was gait-retraining stage (baseline, new gait, post-test) and the dependent

variable was mean spectral power (dB) across all epochs. The means, p values, and effect sizes for

spectral power are presented in tables 1-3. First, it was hypothesized that there would be an

increase in both beta and gamma power over the prefrontal brain regions following an increase in

step rate and that these measures would reduce as a result of training. The repeated-measures

ANOVA showed a main effect of gait-retraining stage in the right prefrontal cortex within the beta

frequency band (F(2, 7) = 4.939, p < .05, d =.861) as well as the gamma frequency band (F(2, 7) =

4.246, p < .05, d = .844). Post-hoc tests indicated a significant spectral increase from baseline to

new gait in the beta and gamma frequencies. Post-hoc tests did not show the decreases in beta and

gamma power over the right prefrontal area from new gait to post training to be significant.



However, as shown by the Cohen’s d scores (figure 3), the effect sizes were large for both the

increase from baseline to new gait as well for the decrease in these measures as a result of

training. The increase in power in the left prefrontal cortex was not significant in the beta or

gamma frequency bands and showed only moderate effect sizes (F(2, 7) = 2.432, p > .05, d =.399;

F(2,7)=2.222,p >.05,d = .337, respectively). The findings in the right prefrontal cortex support

our first research hypothesis and suggest that there is a greater engagement of cognitive

resources in this region to inhibit the previously accustomed full stride motion.

Right Pre Frontal Cortex
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A
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Fig. 5. Mean power spectral density for all
participants in the right prefrontal region.
*=p<.05
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It was further hypothesized that both mu and beta frequency bands would initially

decrease in power over the primary motor cortices as participants increased their step rate and

then rise in response to training. This hypothesis was not supported by the repeated measures

ANOVA in either the left primary motor cortex (mu F(2, 7) = 3.213, p=.067,d =.750; beta F(2, 7) =

3.226, p = .066, d =.747) or the right primary motor cortex (mu F(2, 7) = 3.511, p =.054, d = .780;

beta F(2, 7) = 2.982, p =.079, d =.562). It should be noted that the mean spectral power in both

the beta and mu frequency bands in the primary motor cortex increased in both hemispheres with

participants increasing their step rate and then decreased after training. This was opposite to the

expected direction and contrary to many studies’ findings in similar conditions (Weiser et al,,

2010; Presacco et al., 2011; Seeber et al,, 2014; Gwin et al,, 2011; Wagner et al., 2014). Although

these findings were not significant, their large effect sizes merit the attention of future research

(table 2).

Finally, it was hypothesized that gamma spectral power would first increase over the

primary motor cortices as participants increased step rate and decrease as the new gait was

learned. Although there were large increases in these measures, the repeated measures ANOVA

was not significant for both hemispheres (left F(2, 7)= 2.993, p = .079, d = .716; right F(2, 7) =

2.758, p =.094, d = .557). However, all the effect sizes were large for the changes in gamma

power over the primary motor cortices.
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Hypothesis 1 Results

Mean Spectral Power over all epochs (db) Cohen's d
Baseline  New Gait Post-Training F Sig. BL-NG NG-PT NG-PT sig.
Left Pre Frontal Cortex -4.999 -2.560 -2.952 2.432 .120 0.399 0.064 .332
Right Pre Frontal Cortex -4.723 0.990 -4.180 4.939 .021 0.861 0.848 .266
Left Pre Frontal Cortex -10.438 -8.454 -8.981 2.222 .141 0.337 0.090 .298
Gamma Right Pre Frontal Cortex -10.361 -4.967 -10.298 4.246 .033 0.844 0.873 .196
BL = Baseline data, NG = New gait data, PT = Post test data
Table 1
Hypothesis 2 Results
Mean Spectral Power over all epochs (db) Cohen's d
Baseline  New Gait Post-Training F Sig. BL-NG NG-PT NG-PT sig.
Left Primary Motor Cortex -6.530 -3.578 -5.614 3.213 0.067 0.750 0.510 .125
Mu Right Primary Motor Cortex -5.591 -0.052 -4.021 3.511 0.054 0.780 0.560 .361
Left Primary Motor Cortex -8.153 -3.173 -6.279 3.226 0.066 0.747 0.515 .134
Beta Right Primary Motor Cortex -7.291 -2.519 -4.565 2.982 0.079 0.562 0.293 374
BL = Baseline data, NG = New gait data, PT = Post test data
Table 2
Hypothesis 3 Results
Mean Spectral Power over all epochs (db) Cohen's d
Baseline  New Gait Post-Training F Sig. BL-NG NG-PT NG-PT sig.
Gamma Left Primary Motor Cortex -13.681 -8.983 -12.517 2.993 0.079 0.716 0.620 113
Right Primary Motor Cortex  -13.297 -8.843 -10.922 2.758 0.094 0.557 0.309 377
BL = Baseline data, NG = New gait data, PT = Post test data

Table 3
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Fig. 6. Mean spectral power in the beta and gamma frequency
bands across all gait retraining phases in the prefrontal cortices.
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Spectral Power Results in the Primary Motor Cortex-Gamma
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Fig. 8. Mean spectral power in the gamma frequency band across all gait
retraining phases in the primary motor cortices.

Discussion
To our knowledge, this is the first study to use EEG to track learning during walking or
running. The purpose of this study was to determine the cognitive load of running with an altered
gait and identify EEG biomarkers that provide evidence of motor skill learning. Our findings

showed that as runners increase their step rate, the greatest changes in brain activity are seen in
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the prefrontal and motor regions and suggest a greater cognitive demand compared to the

baseline step rate. We also give EEG evidence that cognitive load decreases in response to

training, a characteristic of later learning stages. Our findings in the prefrontal and primary motor

regions, along with suggestions for future research will be discussed below.

As participants ran with the new step rate for the first time, they showed a significant

increase in beta power over the right prefrontal cortex. These findings are consistent with

previous EEG studies and give evidence for an increase in cognitive load typical for the early

cognitive stage in Fitts and Posner’s learning model (1967) (Wagner et al., 2016; Swann et al,,

2009; Aron et al,, 2014). Based on results from a finger-tapping task, Swann et al. (2009) suggest

that the right prefrontal region is part of a larger inhibitory network with the basal ganglia and

primary motor cortex that serves to stop previously learned responses. Wagner et al. (2016)

showed similar results during gait. They reported large increases in beta power in the right

prefrontal hemisphere while participants reacted to walking with shorter steps compared to

reacting to longer steps. Our findings provide further evidence for this function of the right

prefrontal region and show that it is consistent in more complex movements, such as running.

The results of the current study also show that as the novelty of a new task wears off with

practice, this increase of activation in the right prefrontal cortex begins to attenuate towards

baseline levels. Whether this increase of beta power in the right prefrontal cortex would be

observed in other methods of running gait alteration could be the focus of future research. This
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finding gives promising evidence for the permanent maintenance of the new gait pattern and

offers a unique method of monitoring the motor learning process. Future work could apply these

methods to identify learning in athletes as they perform sport related movements, amputees as

they adapt to prostheses, and soldiers as they perform novel combat operations.

In addition to activity in the right prefrontal region, interesting results were seen in the

primary motor cortex. Although these differences lacked significance at p = .05, their large effect

sizes suggest it to merely be a sample size issue. As participants initially increased their step rate,

there was a power increase in the mu, beta and gamma bands of both hemispheres. In addition, all

of these frequency bands reported spectral power in the direction of their baseline values after

training. This pattern suggests that mu, beta and gamma may also be indicators of motor learning

and may be used in future studies to track motor skill acquisition. Interestingly, many studies

have seen a decrease in the mu and beta bands over the primary motor cortex during lower limb

movement and thus, this finding was not expected (e.g., Presacco et al., 2011, Severens et al., 2012;

Wagner et al, 2012; Weiser et al., 2010). Freeman et al. (2016) suggested that increasing

cognitive workload may set the motor system into a suppressed state that results in an increase in

mu frequency power over the motor areas compared to a low cognitive workload. It is possible

that a similar phenomenon occurred in result of increasing cognitive workload by altering

runners’ step rate. With respect to the increase of beta power, Gwin et al. (2011) used similar

methods of mobile EEG to suggest differences in brain activation across the gait cycle. They found

83



there to be an increase in beta power over the sensorimotor region contralateral to the pushing off

foot during the end of stance phase. It is possible that this burst of beta power is amplified as

participants attempt to push off with less force as they seek to take more steps. This research falls

in line with previous research that shown an increase in gamma power over the primary motor

cortex during gait. These findings further this research by showing the increase in spectral power

to subside in response to training.

Limitations

Although these findings are promising, there are a few limitations to the current study. The

selected sample size hinders the ability to infer these results onto the population. Two of the

three hypotheses were not statistically significant at the p<.05 level. However, based on the large

effect sizes, this lack of significance is likely due to a small sample size. A large amount of

movement artifact is inherent to mobile EEG research and, in combination with the variability that

already exists in EEG data, merits a need for proper planning of sample size to ensure significant

findings. In addition, it is possible that the amount of electrodes used may be seen as a limitation.

Many of the mobile EEG studies recently published used an EEG cap with more than 100

electrodes, whereas the cap used for this study had only 64. As a result of our rigorous data

processing methods, multiple electrodes were removed from analysis because of artifact

contamination. This generally resulted in around 50 electrodes used for data processing. When

using independent component analysis algorithms, more electrodes allow for better spatial
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accuracy of the EEG components. However, recent research has shown that as little as 35

electrodes are necessary for sufficient spatial and temporal precision of the resulting ICA

components (Lau, Gwin & Ferris, 2012). These results suggest the findings of Lau et al. (2012) to

also be applicable to mobile EEG research.

Conclusion

An essential characteristic of motor skills is a permanent capability to perform the behavior that is

not quickly diminished with time, fatigue or mood. Previous research has used performance

indicators as a sign for permanent behavioral change. This research provides psychophysiological

evidence that neural changes are being made to result in the permanent execution of the new gait

pattern. The current study showed an increase in beta power over the right prefrontal cortex as

runners increase their step rate. This increase in right prefrontal beta power is indicative of an

increase in cognitive workload as the individual strives to inhibit the previously learned running

pattern. It was also shown that with time and proper training, these changes in brain frequency

power can be diminished towards baseline levels, a hopeful biological marker for permanently

learned motor skills.
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Part II: Differing neural strategies in left and right-handed individuals during motor imagery

Results
Behavioral results
Behavioral results from the one-way multivariate ANOVA are shown in table 4 and 5. The ANOVA
revealed no significant differences in either accuracy scores or reaction time between right-and
left-handers in any condition. There was effectively no difference in behavioral performance
across these two groups.

Stimulus Response Accuracy Score

Mean
Righties  Lefties F sig. Partial n2 Cohen's d
Simple right-handed images 0.87 0.82 0.45 0.51 0.02 0.29
Simple left-handed images 0.87 0.88 0.06 0.81 0.00 0.10
Familiar right-handed images 0.83 0.82 0.03 0.86 0.00 0.08
Familiar left-handed images 0.83 0.84 0.01 0.92 0.00 0.04
Unique right-handed images 0.85 0.83 0.35 0.56 0.02 0.26
Unique left-handed images 0.83 0.81 0.05 0.83 0.00 0.10

Table 4. One-way multivariate ANOVA results for response accuracy scores for both left and right-
handers.

Stimulus Response Reaction Time (ms)

Mean
Righties  Lefties F sig. Partial n2 Cohen's d
Simple right-handed images 1414.89 1492.23 0.53 0.48 0.03 0.31
Simple left-handed images 1436.83 1577.72 2.71 0.12 0.12 0.70
Familiar right-handed images ~ 1501.33 1573.78 0.55 0.47 0.03 0.32
Familiar left-handed images 1519.18 1540.85 0.05 0.82 0.00 0.10
Unique right-handed images 1547.49 161590 0.58 0.45 0.03 0.33
Unique left-handed images 1588.31 1601.56 0.03 0.88 0.00 0.07

Table 5. One-way multivariate ANOVA results for reaction time for both left and right-handers.
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Laterality Head Plots

The resulting lateralization head plots can be seen in figure 9. It was first hypothesized

that when shown images of right hands, the right-handed group would show greater contralateral

amplitude of the N2 component in the parietal lobe than was seen in the right-hemisphere when

shown images of left hands. As can be seen in figure 9b, little contralateral preference was

observed in the parietal cortex regardless of image complexity or hand seen. Interestingly, a

significant contralateral activation was seen in the premotor cortex when shown right hands in a

unique position.

Next, it was hypothesized that amplitude of the N2 would not differ across hemispheres in

the parietal lobe for all image types in the left-handed group. Thus, it was expected that no color

would be seen in the lateralization head plots of the left-handed group in this region. Based on the

lateralization head plots of the N2 component, left-handers’ N2 component was equal across

hemispheres only when shown images of hands in simple hand postures. Right-handers also

showed this bilateral activation for simple hand postures. The activation of the N2 component for

the other two image complexity levels was inconsistent with a slight preference for the right

parietal region regardless of hand shown.

Further, it was hypothesized that for right-handers, greater amplitude of P3 would be seen

in the premotor cortex of the hemisphere contralateral to the stimulus hand. This contralateral

87



preference was not observed in the resulting lateralization head plots. Activation of the P3 in the

premotor cortex was generally bilateral in activation regardless of hand shown and brain area. In

line with our fourth hypothesis, this trend was also shown for left-handers with the exception of

an ipsilateral activation in P3 when shown images of right hands in a familiar posture.

ANOVA Results

In addition to the laterality head plots, a one-way multivariate ANOVA was calculated in

order to identify any further differences in ERP components between these two populations

(tables 6-8). Interestingly, all significant findings in the parietal lobe indicated a greater activation

for the right-handed group. However, all significant findings in the PMC and primary motor cortex

showed a greater activation for the left-handed group.

P1

Due its short latency, no differences were expected in the P1 component between right and

left-handers. However, the right-handed group showed a significantly greater P1 activation in the

parietal lobe for unique left-handed images in the left hemisphere (F(22,1) = 13.183, p <.01; d =

1.482, np? = .375) and the right hemisphere (F(22,1) = 4.806, p < .05; d = 1.482, n,? = .179) (fig.

10a-b and table 6) . For right-handed images in simple positions, the right-handed group showed

a significantly greater P1 activation in the supplementary motor area in the left hemisphere

(F(22,1)=6.361, p <.02; d = 1.030, np? = .224) and the right hemisphere (F(22,1) = 12.936, p <.01;
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d = 1.468, np? = .370) (fig. 10e-f and table 6). Left-handers did not show significantly greater

activation of the P1 in any condition.

N2

Right-handers showed larger activation of the N2 in the parietal region as well, but only in

the left hemisphere. The N2 for right-handers was significantly larger than left-handers in this

area when shown unique left hands (F(22,1) = 4.942, p <.05; d =.908, np? = .183) and simple right

hands (F(22,1) = 4.667, p < .05; d = .882, np? = .175) (table 7). Generally, the left-handed group

showed greater activation in the SMA, PMC and primary motor cortex of both hemispheres when

shown left hands.

P3

All significant findings in the P3 favored the left-handed group, included all stimulus

conditions and were located in the motor related brain regions. The greatest of these significant

findings were in both hemispheres of the SMA and PMC while looking at left hands (SMA-left

F(22,1) = 21.852, p <.001; d = 1.908, 0,2 = .498) (SMA-right F(22,1) = 20.541, p < .001; d = 1.850,

ny2 = .483) (PMC-left F(22,1) = 15.012, p < .002; d = 1.582, n,2 =.406) (PMC-right F(22,1) = 18.832,

p<.001;d=1.772,n,%=.461).
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Left Hemisphere

Right Hemisphere

P1
Left Handed Images
Brain Image Mean Mean Cohen's Brain Image Mean Mean Cohen's
Region Complexity Righties Lefties F Sig. Partial n2 d G.A. Region Complexity Righties Lefties F Sig. Partial n2 d G.A.
SMA Simple 3.494 1574 5.675 0.026 0.205 0.973 Righties |l Parietal Familiar 2.191 1.585 6.009 0.023 0.215 1.001 Righties
Parietal Unique 1.903 1.045 13.183 0.001  0.375 1.482 Righties Jjij Parietal Unique  2.154 1.440 4.806 0.039 0.179  0.895 Righties
Right Handed Images
SMA Simple 4.080 2.688 6.361 0.019 0.224 1.030 _Righties SMA Simple 3.476 1.851 12.936 0.002  0.370 1.468 Righties
G.A. = Greater activation
Table 6
N2
Left Handed Images
Brain Image Mean Mean Cohen's Brain Image Mean Mean Cohen's
Region Complexity Righties Lefties F Sig.  Partial n2 d G.A. Region Complexity Righties Lefties F Sig.  Partial n2 d G.A.
SMA Simple -3.941 -5.279 10.830 0.003 0.330 1.344 SMA  Familiar -3.072 -3.991 6.078 0.022 0.216 1.006
PMC Simple -3.223  -4.251 10.655 0.004 0.326 1.333 M1 Familiar -2.450 -3.106 6.151 0.021 0.219 1.013
M1 Familiar -2.329 -3.229 5.500 0.028 0.200 0.957 PMC Familiar -2.252 -2.968 5.853 0.024 0.210 0.988
PMC Familiar -2.557 -3.396 5.635 0.027 0.204  0.969 SMA Simple  -3.938 -5.118 6.270 0.020 0.222 1.022
SMA Familiar -3.137 -4.209 9.508 0.005 0.302 1.259
Parietal Unique -2.614 -1976 4942 0.037 0.183 0.908 Righties
Right Handed Images
Parietal Simple -4.775  -3.666 4.667 0.042  0.175 0.882 Righties M1 Unique  -2.200 -3.165 4.382 0.048 0.166 _ 0.855 -
G.A. = Greater activation
Table 7
P3
Left Handed Images
Brain Image Mean Mean Cohen's Brain Image Mean Mean Cohen's
Region Complexity Righties Lefties F Sig.  Partial n2 d G.A. Region Complexity Righties Lefties F Sig.  Partial n2 d G.A.
SMA Simple 3.633 6.062 9.272 0.006 0.296 1.243 SMA Simple 4.088 5.641 4.763 0.040 0.178  0.891
SMA Familiar 2.154 3.645 21.852 0.000 0.498 1.908 PMC  Familiar 1.612 2.918 18.832 0.000 0.461 1.772
PMC Familiar 1.801 2917 15.012 0.001 0.406 1.582 SMA Familiar 2.063 3.505 20.541 0.000 0.483 1.850
PMC Unique 1.845 2.650 7.918 0.010 0.265 1.149 SMA Unique  2.451 3.077 4.741 0.040 0.177 0.889
M1 Unique  1.507 2.401 12.317 0.002 0.359 1.433
PMC Unique 1728 2.407 7.182 0.014 0.246 1.094
Right Handed Images
PMC Familiar 1.913 2.843 13.261 0.001 0.376 1.487 SMA  Familiar  2.565 3.548 5.803 0.025 0.209  0.983
SMA Familiar 2.550 3.652 13.409 0.001 0.379 1.495 PMC Unique  1.385 3.036 19.324 0.000 0.468 1.795
SMA Unique 2.206 3.643 12.314 0.002 0.359 1.433 M1 Unique  1.401 2.735 13.452 0.001 0.379 1.497
PMC Unique 1.702 2979 12,625 0.002 0.365 1.451 SMA Unique  1.953 3.733 19.696 0.000 0.472 1.812
M1 Unique 1.847 2.724 4360 0.049 0.165 0.852
G.A. = Greater activation
Table 8
[ ] Right-handed group
[ ] Left-handed group
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Figure 9. Lateralization head plots
for statistical comparison of left-
right hemisphere preferences for
the ERP components of interest.
Significant differences (p <.05) are
colored over the electrode that
showed greater activation. For
visualization purposes,
combinations where left electrode
was greater than right electrode
are colored red. Combinations
where right electrode was greater
than left electrode are colored
blue.
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Figure 10. Event related potentials for both hemispheres in the parietal lobe,
premotor cortex, and supplementary motor area.
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Discussion

In this study, we hypothesized there to be a difference in laterality of premotor and parietal

brain regions between right and left-handers as they mentally simulate movements. Previous

research with fMRI and EEG coherence has shown left-handers to have more bilateral activation

than right-handers and thus, we expected to find similar results with EEG. In our results,

differences in lateral activation between these groups were not as prevalent as the differences in

anterior-posterior activity. While solving the HLT, the left-handed group showed greater

activation in the motor-related areas of the brain and right-handers showed more activation in the

parietal brain regions. The following section will discuss these deviations from the expected

findings and provide explanations and implications for the observed results.

Due to the findings from Kelly et al. (2015) and Martin et al. (2011), it was hypothesized

that the laterality of N2 and P3 would differ between left-and right-handers. Our results showed

little differences in laterality and generally showed both hemispheres to be equally involved for

both populations. In the research by Kelly and colleagues (2015), participants were introduced to

hand tools used for drilling and removing screws. After a period of physically using the tools,

participants were shown pictures of these tools being used and asked to indicate if the screw was

being inserted or removed from a board in the picture. Their results showed imaginary coherence

between the parietal and premotor areas to be greatest in the hemisphere contralateral to the

stimulus hand for the right-handed group. For the left-handed group, this coherence was
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generally equal for both hemispheres regardless of the stimulus hand used. Martin et al. (2011)

had a similar study design and allowed participants to physically execute an upper extremity

reaching task before mentally simulating the same task. Although both of these studies share

similarities with our current study, they both employ inherently different tasks and methods of

measurement. Both of these tasks involve a mental simulation of a physical action that had

recently been executed by the participant. In contrast, our study involved the understanding of an

image that possibly had never been seen prior to data collections. These variations in task

parameters may be the reason for discrepancies in the results found. It may be that when

mentally simulating a familiar action (physically executed in recent past) these lateral differences

become evident, but during initial object understanding, hemispheric preferences are not shown

for either group. Another possible cause for the variance in these findings may be due to the

method of measurement. Kelly et al. (2015) showed lateral preferences to be highest from 280-

526 ms after stimulus onset. Martin and colleagues’ (2011) results were taken from a three

second window following stimulus presentation. As can be seen in figure 10, all of the ERP

components of interest to this study occurred within 300 ms of stimulus onset. Results from this

study suggest that laterality differences do not emerge during the initial phases of the HLT.

Further work is needed to better understand the temporal development of laterality differences in

these populations. It is possible that a study examining frequency-based measures of EEG during

the HLT may provide more understanding in this area.
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Instead of a hemispheric preference between right and left-handers, our results showed

anterior-posterior differences in brain activity to solve the HLT. The P1 component reflects early

visual processing and is affected by the spatial characteristics of an object. No differences in visual

processing were expected between these groups and thus, the P1 component was not expected to

differ across these groups. However, right-handers showed greater activation of the P1 in the

SMA and parietal regions than left-handers. Recent research has shown the amplitude of P1 in the

parietal lobe to reflect top-down modulation (Zanto & Gazzaley, 2009; Zanto et al., 2011). Thus, a

difference in P1 may suggest a greater ability to use multi-sensory input to focus on task-relevant

stimuli. According to Parsons (2003), the first three steps of solving the HLT are first, visual

encoding, second, analysis of orientation differences between the target and mental template and

third, mental rotation of the appropriate body part from the current to the target position,

respectively. These results indicate that right-handers may be more efficient during visual

encoding than left-handers. The ability to recognize task-relevant cues in the stimulus picture

would assist them to form a mental template from previous motor experiences and rely less on the

mental simulation of actually reproducing the hand posture. This suggestion is consistent with the

findings over the SMA, PMC and primary motor cortices which all revealed a greater amplitude in

N2 and P3 for left-handers. It is possible that left-handers rely on the motor system to more

effectively mentally simulate movement of the appropriate limb to determine image laterality.

This may be due to the fact that left-handers live in an environment that favors right-handers and
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thus, are faced with the task of using common objects with their non-dominant hand (scissors,

school desks, computer mouse, etc.) that right-handers do not face. This forced use of the non-

dominant hand, may cause left-handers to rely on motor imagery to solve tasks that right-handers

can solve by using visual and context clues. Interestingly, even though activation of brain regions

differed between these two groups, behavioral results denote no difference in physical

performance. This variation of active brain regions suggests that left and right-handers differ in

neural strategies during motor imagery. Future research should attempt to clarify these

differences by isolating the different stages involved in the HLT task.

Limitations

A limitation of this study is that electromyography (EMG) was not recorded from the arm muscles

in order to quantitatively dismiss the possibility that participants attempted to imitate the image

seen. Vision of hands was occluded and the experimenter monitored all participants, but EMG

would confirm that EEG activity was reflective of action simulation and not execution. An

additional limitation was that the picture bank of hand images contained more images classified as

‘unique’ than the other two complexity levels (‘familiar’ and ‘simple’). This resulted in all

participants seeing more unique images than familiar and simple images. In order to understand

the involvement of image complexity on these neural markers, equal amounts of all levels should

be included in the study procedure.
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Conclusion

This work sought to better explain the differences in neural activity between right and left-

handers during motor imagery. Our results suggest that in addition to a difference in hemispheric

laterality between right and left-handers, there exists a difference in neural strategies that rely on

different areas of the brain during motor imagery. This work can help clinical researchers to

better understand the behavioral consequences of individuals with damage to these brain regions.

Development of valid and efficient rehabilitation practices is centered on a sound understanding

of the neural activates involved in the motor and cognitive tasks affected. Future work will focus

on how these differences in the neural strategies of motor imagery affect behavior and physical

actions.
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Chapter 5: Conclusion

Since 1929 electroencephalography has been used to further the current knowledge of the

human brain. It has been applied in many different ways to shine light on brain function during

multiple different tasks. The purpose of this study was to better understand the ways in which

electroencephalography can be used to measure regions of the brain involved with motor control

and learning. For this purpose, a background of EEG was provided, followed by the description of

two separate research studies that used EEG in different modalities to understand aspects of

motor learning and control. These closing paragraphs will layout the main takeaways from this

research and elaborate on their significance to this area of study.

In concluding this work, many key points were evident from this research. The first main

takeaway from this study is that EEG can effectively be used to track neural changes in the brain

throughout the learning process of complex movements, such as gait. Along with other uses, this

new ability will benefit populations who suffer from gait disturbances (e.g., stroke, amputees,

multiple sclerosis, Parkinson’s disease, etc.) throughout their rehabilitation and assist them to

gain independence. The second highlight gathered form this work is that left and right-handers

differ in the way they use motor imagery to understand and plan movements. Based on our

results, left-handers apply a greater degree of motor simulation while preparing for movement

and understanding the movement of others. The underlying cause of this difference, as well as the



role of hand-dominance in motor function as a whole will be the focus of future research. A third

key point gathered from this research is the need for proper experimental design and data

collection preparation. Due to the variable and noise-prone nature of EEG, the collected signal, in

its raw form, is habitually laden with unwanted noise. Thus, it is imperative to design research

studies that collect enough EEG signal to successfully filter out the unwanted noise and measure

the underlying neural activity of interest. Moreover, the careful preparation of the EEG cap to the

head of the participant is essential, especially in studies involving physical movement, such as our

gait-retraining project. A final pivotal takeaway from this work was the need for further research

in motor learning and control. Since Ramon y Cajal first discovered the neuron (Ramon y Cajal,

1888), our understanding of how the brain understands, plans and executes movement has grown

immensely. However, there is still so much that is unknown about this complex system. The

intricacies of how sensory information is coordinated to result in successful motor execution are

still largely a mystery. In this search for a greater understanding of the human motor system, the

use of EEG will be valuable due to its temporal precision and ability to monitor brain processes

during movement.

The two research projects included in this study were chosen because of their relevance to

the current directions of motor control research with EEG. One of these projects involved

collecting EEG during a complex movement involving multiple joints and planes of motion. This

research is essential as these types of movements are executed daily and imperative to
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independent living. Previously all motor control research using brain imaging has been done on

stationary patients executing very simple movements. However, it is now possible to monitor

brain activity as individuals execute movements common to daily life. Our work adds to this field

by showing that EEG can be collected during running and can be used to monitor motor learning.

The second study included in this research used EEG to monitor active brain regions during motor

imagery. It is only recently that we know of the similarities in brain activity during imagined and

physically executed actions. Thus, much research has been dedicated to understanding the

underlying neural correlates involved in this shared activity. Our second study on motor imagery

and hand-dominance highlights that this shared activity between imagined and executed

movements is not uniform across the whole population. We showed that although physical

behavior did not differ, the mental strategies used and mental representations recruited are

affected by the dominant use of a hand. This discovery will assist in future research seeking to

clarify the complexity that surrounds motor cognition research.

In summary, EEG has, and will continue to be, a vital tool in the area of motor learning and

control research. The two studies included in this work exemplify how EEG can be used to

monitor these brain processes during simple, complex and imagined movements of all sorts. This

work emphasizes a need for further research into the motor systems of the brain and declares that

EEG will be an essential tool in doing so for many years to come.
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