52 research outputs found
Algorithms for outerplanar graph roots and graph roots of pathwidth at most 2
Deciding whether a given graph has a square root is a classical problem that
has been studied extensively both from graph theoretic and from algorithmic
perspectives. The problem is NP-complete in general, and consequently
substantial effort has been dedicated to deciding whether a given graph has a
square root that belongs to a particular graph class. There are both
polynomial-time solvable and NP-complete cases, depending on the graph class.
We contribute with new results in this direction. Given an arbitrary input
graph G, we give polynomial-time algorithms to decide whether G has an
outerplanar square root, and whether G has a square root that is of pathwidth
at most 2
Polynomial Delay Algorithm for Listing Minimal Edge Dominating sets in Graphs
The Transversal problem, i.e, the enumeration of all the minimal transversals
of a hypergraph in output-polynomial time, i.e, in time polynomial in its size
and the cumulated size of all its minimal transversals, is a fifty years old
open problem, and up to now there are few examples of hypergraph classes where
the problem is solved. A minimal dominating set in a graph is a subset of its
vertex set that has a non empty intersection with the closed neighborhood of
every vertex. It is proved in [M. M. Kant\'e, V. Limouzy, A. Mary, L. Nourine,
On the Enumeration of Minimal Dominating Sets and Related Notions, In Revision
2014] that the enumeration of minimal dominating sets in graphs and the
enumeration of minimal transversals in hypergraphs are two equivalent problems.
Hoping this equivalence can help to get new insights in the Transversal
problem, it is natural to look inside graph classes. It is proved independently
and with different techniques in [Golovach et al. - ICALP 2013] and [Kant\'e et
al. - ISAAC 2012] that minimal edge dominating sets in graphs (i.e, minimal
dominating sets in line graphs) can be enumerated in incremental
output-polynomial time. We provide the first polynomial delay and polynomial
space algorithm that lists all the minimal edge dominating sets in graphs,
answering an open problem of [Golovach et al. - ICALP 2013]. Besides the
result, we hope the used techniques that are a mix of a modification of the
well-known Berge's algorithm and a strong use of the structure of line graphs,
are of great interest and could be used to get new output-polynomial time
algorithms.Comment: proofs simplified from previous version, 12 pages, 2 figure
An FPT 2-Approximation for Tree-Cut Decomposition
The tree-cut width of a graph is a graph parameter defined by Wollan [J.
Comb. Theory, Ser. B, 110:47-66, 2015] with the help of tree-cut
decompositions. In certain cases, tree-cut width appears to be more adequate
than treewidth as an invariant that, when bounded, can accelerate the
resolution of intractable problems. While designing algorithms for problems
with bounded tree-cut width, it is important to have a parametrically tractable
way to compute the exact value of this parameter or, at least, some constant
approximation of it. In this paper we give a parameterized 2-approximation
algorithm for the computation of tree-cut width; for an input -vertex graph
and an integer , our algorithm either confirms that the tree-cut width
of is more than or returns a tree-cut decomposition of certifying
that its tree-cut width is at most , in time .
Prior to this work, no constructive parameterized algorithms, even approximated
ones, existed for computing the tree-cut width of a graph. As a consequence of
the Graph Minors series by Robertson and Seymour, only the existence of a
decision algorithm was known.Comment: 17 pages, 3 figure
Exhaustive generation of -critical -free graphs
We describe an algorithm for generating all -critical -free
graphs, based on a method of Ho\`{a}ng et al. Using this algorithm, we prove
that there are only finitely many -critical -free graphs, for
both and . We also show that there are only finitely many
-critical graphs -free graphs. For each case of these cases we
also give the complete lists of critical graphs and vertex-critical graphs.
These results generalize previous work by Hell and Huang, and yield certifying
algorithms for the -colorability problem in the respective classes.
Moreover, we prove that for every , the class of 4-critical planar
-free graphs is finite. We also determine all 27 4-critical planar
-free graphs.
We also prove that every -free graph of girth at least five is
3-colorable, and determine the smallest 4-chromatic -free graph of
girth five. Moreover, we show that every -free graph of girth at least
six and every -free graph of girth at least seven is 3-colorable. This
strengthens results of Golovach et al.Comment: 17 pages, improved girth results. arXiv admin note: text overlap with
arXiv:1504.0697
Solving Problems on Graphs of High Rank-Width
A modulator of a graph G to a specified graph class H is a set of vertices
whose deletion puts G into H. The cardinality of a modulator to various
tractable graph classes has long been used as a structural parameter which can
be exploited to obtain FPT algorithms for a range of hard problems. Here we
investigate what happens when a graph contains a modulator which is large but
"well-structured" (in the sense of having bounded rank-width). Can such
modulators still be exploited to obtain efficient algorithms? And is it even
possible to find such modulators efficiently?
We first show that the parameters derived from such well-structured
modulators are strictly more general than the cardinality of modulators and
rank-width itself. Then, we develop an FPT algorithm for finding such
well-structured modulators to any graph class which can be characterized by a
finite set of forbidden induced subgraphs. We proceed by showing how
well-structured modulators can be used to obtain efficient parameterized
algorithms for Minimum Vertex Cover and Maximum Clique. Finally, we use
well-structured modulators to develop an algorithmic meta-theorem for deciding
problems expressible in Monadic Second Order (MSO) logic, and prove that this
result is tight in the sense that it cannot be generalized to LinEMSO problems.Comment: Accepted at WADS 201
Open problems on graph coloring for special graph classes.
For a given graph G and integer k, the Coloring problem is that of testing whether G has a k-coloring, that is, whether there exists a vertex mapping c:V→{1,2,…}c:V→{1,2,…} such that c(u)≠c(v)c(u)≠c(v) for every edge uv∈Euv∈E. We survey known results on the computational complexity of Coloring for graph classes that are hereditary or for which some graph parameter is bounded. We also consider coloring variants, such as precoloring extensions and list colorings and give some open problems in the area of on-line coloring
Ferromagnetic semiconductors
The current status and prospects of research on ferromagnetism in
semiconductors are reviewed. The question of the origin of ferromagnetism in
europium chalcogenides, chromium spinels and, particularly, in diluted magnetic
semiconductors is addressed. The nature of electronic states derived from 3d of
magnetic impurities is discussed in some details. Results of a quantitative
comparison between experimental and theoretical results, notably for Mn-based
III-V and II-VI compounds, are presented. This comparison demonstrates that the
current theory of the exchange interactions mediated by holes in the valence
band describes correctly the values of Curie temperatures T_C magnetic
anisotropy, domain structure, and magnetic circular dichroism. On this basis,
chemical trends are examined and show to lead to the prediction of
semiconductor systems with T_C that may exceed room temperature, an expectation
that are being confirmed by recent findings. Results for materials containing
magnetic ions other than Mn are also presented emphasizing that the double
exchange involving hoping through d states may operate in those systems.Comment: 18 pages, 8 figures; special issue of Semicon. Sci. Technol. on
semiconductor spintronic
Induced Disjoint Paths in Circular-Arc Graphs in Linear Time
The Induced Disjoint Paths problem is to test whether a graph G with k distinct pairs of vertices (si,ti) contains paths P1,…,Pk such that Pi connects si and ti for i=1,…,k, and Pi and Pj have neither common vertices nor adjacent vertices (except perhaps their ends) for 1≤
Graph editing to a given degree sequence
We investigate the parameterized complexity of the graph editing problem called Editing to a Graph with a Given Degree Sequence where the aim is to obtain a graph with a given degree sequence σ by at most k vertex deletions, edge deletions and edge additions. We show that the problem is W[1]-hard when parameterized by k for any combination of the allowed editing operations. From the positive side, we show that the problem can be solved in time 2O(k(Δ⁎+k)2)n2logn for n -vertex graphs, where Δ⁎=maxσ, i.e., the problem is FPT when parameterized by k+Δ⁎. We also show that Editing to a Graph with a Given Degree Sequence has a polynomial kernel when parameterized by k+Δ⁎ if only edge additions are allowed, and there is no polynomial kernel unless NP⊆co-NP/poly for all other combinations of the allowed editing operations
Modification by high pressure of fluctuation paraconductivity of underdoped HoBa2Cu3O7-δ single crystals
In this work, we investigate the effect of high pressure on the conductivity in the basal plane of the high temperature super conducting (HTSC) single crystals HoBa2Cu3O7-δ. It is determined that the excess conductivity Δσ(T) of the HoBa2Cu3O7- δ single crystals in the temperature interval near the critical temperature (Tc) is described within the framework of the Aslamazov-Larkin theoretical model. It is shown that the evolution of the transverse coherence length ξc(0) in the case of application/removal of high pressure is largely determined by the “relaxation” pressure effect during prolonged exposure of the sample under load at room temperature.The final publication is available at Springer via 10.1007/s10854-016-4797-6Copyright © and Moral Rights are retained by the author(s) and/ or other copyright owners. A copy can be downloaded for personal non-commercial research or study, without prior permission or charge. This item cannot be reproduced or quoted extensively from without first obtaining permission in writing from the copyright holder(s). The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the copyright holders<br/
- …
