52 research outputs found

    Algorithms for outerplanar graph roots and graph roots of pathwidth at most 2

    Full text link
    Deciding whether a given graph has a square root is a classical problem that has been studied extensively both from graph theoretic and from algorithmic perspectives. The problem is NP-complete in general, and consequently substantial effort has been dedicated to deciding whether a given graph has a square root that belongs to a particular graph class. There are both polynomial-time solvable and NP-complete cases, depending on the graph class. We contribute with new results in this direction. Given an arbitrary input graph G, we give polynomial-time algorithms to decide whether G has an outerplanar square root, and whether G has a square root that is of pathwidth at most 2

    Polynomial Delay Algorithm for Listing Minimal Edge Dominating sets in Graphs

    Full text link
    The Transversal problem, i.e, the enumeration of all the minimal transversals of a hypergraph in output-polynomial time, i.e, in time polynomial in its size and the cumulated size of all its minimal transversals, is a fifty years old open problem, and up to now there are few examples of hypergraph classes where the problem is solved. A minimal dominating set in a graph is a subset of its vertex set that has a non empty intersection with the closed neighborhood of every vertex. It is proved in [M. M. Kant\'e, V. Limouzy, A. Mary, L. Nourine, On the Enumeration of Minimal Dominating Sets and Related Notions, In Revision 2014] that the enumeration of minimal dominating sets in graphs and the enumeration of minimal transversals in hypergraphs are two equivalent problems. Hoping this equivalence can help to get new insights in the Transversal problem, it is natural to look inside graph classes. It is proved independently and with different techniques in [Golovach et al. - ICALP 2013] and [Kant\'e et al. - ISAAC 2012] that minimal edge dominating sets in graphs (i.e, minimal dominating sets in line graphs) can be enumerated in incremental output-polynomial time. We provide the first polynomial delay and polynomial space algorithm that lists all the minimal edge dominating sets in graphs, answering an open problem of [Golovach et al. - ICALP 2013]. Besides the result, we hope the used techniques that are a mix of a modification of the well-known Berge's algorithm and a strong use of the structure of line graphs, are of great interest and could be used to get new output-polynomial time algorithms.Comment: proofs simplified from previous version, 12 pages, 2 figure

    An FPT 2-Approximation for Tree-Cut Decomposition

    Full text link
    The tree-cut width of a graph is a graph parameter defined by Wollan [J. Comb. Theory, Ser. B, 110:47-66, 2015] with the help of tree-cut decompositions. In certain cases, tree-cut width appears to be more adequate than treewidth as an invariant that, when bounded, can accelerate the resolution of intractable problems. While designing algorithms for problems with bounded tree-cut width, it is important to have a parametrically tractable way to compute the exact value of this parameter or, at least, some constant approximation of it. In this paper we give a parameterized 2-approximation algorithm for the computation of tree-cut width; for an input nn-vertex graph GG and an integer ww, our algorithm either confirms that the tree-cut width of GG is more than ww or returns a tree-cut decomposition of GG certifying that its tree-cut width is at most 2w2w, in time 2O(w2logw)n22^{O(w^2\log w)} \cdot n^2. Prior to this work, no constructive parameterized algorithms, even approximated ones, existed for computing the tree-cut width of a graph. As a consequence of the Graph Minors series by Robertson and Seymour, only the existence of a decision algorithm was known.Comment: 17 pages, 3 figure

    Exhaustive generation of kk-critical H\mathcal H-free graphs

    Full text link
    We describe an algorithm for generating all kk-critical H\mathcal H-free graphs, based on a method of Ho\`{a}ng et al. Using this algorithm, we prove that there are only finitely many 44-critical (P7,Ck)(P_7,C_k)-free graphs, for both k=4k=4 and k=5k=5. We also show that there are only finitely many 44-critical graphs (P8,C4)(P_8,C_4)-free graphs. For each case of these cases we also give the complete lists of critical graphs and vertex-critical graphs. These results generalize previous work by Hell and Huang, and yield certifying algorithms for the 33-colorability problem in the respective classes. Moreover, we prove that for every tt, the class of 4-critical planar PtP_t-free graphs is finite. We also determine all 27 4-critical planar (P7,C6)(P_7,C_6)-free graphs. We also prove that every P10P_{10}-free graph of girth at least five is 3-colorable, and determine the smallest 4-chromatic P12P_{12}-free graph of girth five. Moreover, we show that every P13P_{13}-free graph of girth at least six and every P16P_{16}-free graph of girth at least seven is 3-colorable. This strengthens results of Golovach et al.Comment: 17 pages, improved girth results. arXiv admin note: text overlap with arXiv:1504.0697

    Solving Problems on Graphs of High Rank-Width

    Full text link
    A modulator of a graph G to a specified graph class H is a set of vertices whose deletion puts G into H. The cardinality of a modulator to various tractable graph classes has long been used as a structural parameter which can be exploited to obtain FPT algorithms for a range of hard problems. Here we investigate what happens when a graph contains a modulator which is large but "well-structured" (in the sense of having bounded rank-width). Can such modulators still be exploited to obtain efficient algorithms? And is it even possible to find such modulators efficiently? We first show that the parameters derived from such well-structured modulators are strictly more general than the cardinality of modulators and rank-width itself. Then, we develop an FPT algorithm for finding such well-structured modulators to any graph class which can be characterized by a finite set of forbidden induced subgraphs. We proceed by showing how well-structured modulators can be used to obtain efficient parameterized algorithms for Minimum Vertex Cover and Maximum Clique. Finally, we use well-structured modulators to develop an algorithmic meta-theorem for deciding problems expressible in Monadic Second Order (MSO) logic, and prove that this result is tight in the sense that it cannot be generalized to LinEMSO problems.Comment: Accepted at WADS 201

    Open problems on graph coloring for special graph classes.

    Get PDF
    For a given graph G and integer k, the Coloring problem is that of testing whether G has a k-coloring, that is, whether there exists a vertex mapping c:V→{1,2,…}c:V→{1,2,…} such that c(u)≠c(v)c(u)≠c(v) for every edge uv∈Euv∈E. We survey known results on the computational complexity of Coloring for graph classes that are hereditary or for which some graph parameter is bounded. We also consider coloring variants, such as precoloring extensions and list colorings and give some open problems in the area of on-line coloring

    Ferromagnetic semiconductors

    Full text link
    The current status and prospects of research on ferromagnetism in semiconductors are reviewed. The question of the origin of ferromagnetism in europium chalcogenides, chromium spinels and, particularly, in diluted magnetic semiconductors is addressed. The nature of electronic states derived from 3d of magnetic impurities is discussed in some details. Results of a quantitative comparison between experimental and theoretical results, notably for Mn-based III-V and II-VI compounds, are presented. This comparison demonstrates that the current theory of the exchange interactions mediated by holes in the valence band describes correctly the values of Curie temperatures T_C magnetic anisotropy, domain structure, and magnetic circular dichroism. On this basis, chemical trends are examined and show to lead to the prediction of semiconductor systems with T_C that may exceed room temperature, an expectation that are being confirmed by recent findings. Results for materials containing magnetic ions other than Mn are also presented emphasizing that the double exchange involving hoping through d states may operate in those systems.Comment: 18 pages, 8 figures; special issue of Semicon. Sci. Technol. on semiconductor spintronic

    Induced Disjoint Paths in Circular-Arc Graphs in Linear Time

    Get PDF
    The Induced Disjoint Paths problem is to test whether a graph G with k distinct pairs of vertices (si,ti) contains paths P1,…,Pk such that Pi connects si and ti for i=1,…,k, and Pi and Pj have neither common vertices nor adjacent vertices (except perhaps their ends) for 1≤

    Graph editing to a given degree sequence

    Get PDF
    We investigate the parameterized complexity of the graph editing problem called Editing to a Graph with a Given Degree Sequence where the aim is to obtain a graph with a given degree sequence σ by at most k vertex deletions, edge deletions and edge additions. We show that the problem is W[1]-hard when parameterized by k for any combination of the allowed editing operations. From the positive side, we show that the problem can be solved in time 2O(k(Δ⁎+k)2)n2log⁡n for n -vertex graphs, where Δ⁎=max⁡σ, i.e., the problem is FPT when parameterized by k+Δ⁎. We also show that Editing to a Graph with a Given Degree Sequence has a polynomial kernel when parameterized by k+Δ⁎ if only edge additions are allowed, and there is no polynomial kernel unless NP⊆co-NP/poly for all other combinations of the allowed editing operations

    Modification by high pressure of fluctuation paraconductivity of underdoped HoBa2Cu3O7-δ single crystals

    Get PDF
    In this work, we investigate the effect of high pressure on the conductivity in the basal plane of the high temperature super conducting (HTSC) single crystals HoBa2Cu3O7-δ. It is determined that the excess conductivity Δσ(T) of the HoBa2Cu3O7- δ single crystals in the temperature interval near the critical temperature (Tc) is described within the framework of the Aslamazov-Larkin theoretical model. It is shown that the evolution of the transverse coherence length ξc(0) in the case of application/removal of high pressure is largely determined by the “relaxation” pressure effect during prolonged exposure of the sample under load at room temperature.The final publication is available at Springer via 10.1007/s10854-016-4797-6Copyright © and Moral Rights are retained by the author(s) and/ or other copyright owners. A copy can be downloaded for personal non-commercial research or study, without prior permission or charge. This item cannot be reproduced or quoted extensively from without first obtaining permission in writing from the copyright holder(s). The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the copyright holders<br/
    corecore