
Induced Disjoint Paths in
Circular-Arc Graphs in Linear Time ?

Petr A. Golovach1, Daniël Paulusma2, and Erik Jan van Leeuwen3

1 Department of informatics, University of Bergen, Norway,
petr.golovach@ii.uib.no

2 School of Engineering and Computer Science, Durham University, UK,
daniel.paulusma@durham.ac.uk

3 Max-Planck Institut für Informatik, Saarbrücken, Germany,
erikjan@mpi-inf.mpg.de

Abstract. The Induced Disjoint Paths problem is to test whether a
graph G with k distinct pairs of vertices (si, ti) contains paths P1, . . . , Pk

such that Pi connects si and ti for i = 1, . . . , k, and Pi and Pj have nei-
ther common vertices nor adjacent vertices (except perhaps their ends)
for 1 ≤ i < j ≤ k. We present a linear-time algorithm that solves In-
duced Disjoint Paths and finds the corresponding paths (if they exist)
on circular-arc graphs. For interval graphs, we exhibit a linear-time al-
gorithm for the generalization of Induced Disjoint Paths where the
pairs (si, ti) are not necessarily distinct.

1 Introduction

A classic algorithmic problem on a graph G with k distinct pairs of vertices
(si, ti) is to find vertex-disjoint paths P1, . . . , Pk such that Pi connects si and ti
for i = 1, . . . k. Known as the Disjoint Paths problem, it is NP-complete on
general graphs [15], but can be solved in O(n3) time for any fixed integer k [24]
(i.e. it is fixed-parameter tractable). The Induced Disjoint Paths problem
also takes as input a graph G with k distinct pairs of vertices (si, ti) and also
asks whether there are paths P1, . . . , Pk such that Pi connects si and ti for
i = 1, . . . , k, but with the extra condition that P1, . . . , Pk must be mutually
induced, that is, no two paths Pi, Pj have common or adjacent vertices (except
perhaps their end-vertices). Notice that the Disjoint Paths problem can be
reduced to Induced Disjoint Paths by subdividing every edge of the graph.
The Induced Disjoint Paths problem is NP-complete even for instances with
k = 2 [2, 5], and thus in particular is not fixed-parameter tractable unless P=NP.

The hardness of both Disjoint Paths and Induced Disjoint Paths on
general graphs inspired research on their complexity on structured graph classes.

? This work is supported by EPSRC (EP/K025090/1) and Royal Society (JP100692).
The research leading to these results has also received funding from the Euro-
pean Research Council under the European Union’s Seventh Framework Programme
(FP/2007-2013) / ERC Grant Agreement n. 267959.

1

On the negative side, Disjoint Paths remains NP-complete on line graphs [19]
and split graphs [14]. Induced Disjoint Paths remains NP-complete on claw-
free graphs [6] (in fact, even on line graphs). Both problems remain NP-complete
on planar graphs [18, 8]. In these cases, however, fixed-parameter algorithms
are known [9, 14, 16, 23, 24]. On the positive side, polynomial-time algorithms
for Disjoint Paths exist on graphs of bounded treewidth [22] and graphs
of cliquewidth at most 2 [12], and for Induced Disjoint Paths on AT-free
graphs [8] and chordal graphs [1].

We focus on the complexity of Induced Disjoint Paths on circular-arc
graphs. Recall that a circular-arc graph G has a representation in which each
vertex of G corresponds to an arc of a circle, and two vertices of G are adjacent
if and only if their corresponding arcs intersect. Circular-arc graphs generalize
interval graphs, which have a representation in which each vertex corresponds
to an interval of the line, and two vertices are adjacent if and only if their corre-
sponding intervals intersect. The complexity of Disjoint Paths is known: it is
NP-complete on interval graphs [21]. In contrast, for Induced Disjoint Paths,
the authors of the present work recently showed a polynomial-time algorithm on
circular-arc graphs [9] (for a weaker problem variant, such an algorithm is also
implied by a general framework [7]). This work, as well as the polynomial-time
algorithms on AT-free graphs [8] and chordal graphs [1], imply a polynomial-
time algorithm on interval graphs. These algorithms, however, do not settle the
complexity of Induced Disjoint Paths on circular-arc graphs (and interval
graphs), as the question whether a linear-time algorithm exists is left open.

In this paper, we exhibit a linear-time algorithm for Induced Disjoint
Paths on circular-arc graphs. This improves on the known algorithm for circular-
arc graphs as well as the known algorithms for interval graphs. We also introduce
a generalization of Induced Disjoint Paths called Requirement Induced
Disjoint Paths, which is to find ri paths that connect si and ti for i = 1, . . . , k,
such that all paths are mutually induced. We present a linear-time algorithm for
Requirement Induced Disjoint Paths on interval graphs. To solve these
problems, our algorithms first preprocesses the instance. Some of the prepro-
cessing rules build on our earlier work on Induced Disjoint Paths [8, 9], but
care is required to adapt them for Requirement Induced Disjoint Paths
and to execute them in linear time. Most preprocessing rules, however, are novel.
After the preprocessing stage, the algorithms identify a set of candidate paths
for each pair (si, ti). For each candidate path for a pair (si, ti), we add an arc
with color i that corresponds to the path to an auxiliary graph H. Finally, we
show that it suffices to find an independent set in H that contains ri arcs of each
color. We show that the algorithms perform all stages in linear time.

2 Preliminaries

We only consider finite undirected graphs that have no loops and no multiple
edges. We refer to the textbook of Diestel [4] for any standard graph terminology
not defined here. Let G = (V,E) be a graph. For a set S ⊆ V , the graph G[S]

denotes the subgraph of G induced by S; that is, the graph with vertex set S
and edge set {uv ∈ E | u, v ∈ S}. We write G − S = G[V \ S]. We denote
the (open) neighborhood of a vertex u by NG(u) = {v | uv ∈ E} and its
closed neighborhood by NG[u] = NG(u) ∪ {u}. We denote the neighborhood
of a set U ⊆ V by NG(U) = {v ∈ V \ U | uv ∈ E for some u ∈ U} and
NG[U] = U ∪NG(U). We denote the degree of a vertex u by degG(u) = |NG(u)|.

We denote an unordered pair of elements x, y by {x, y} (i.e. {x, y} = {y, x}).

Problem Definition Let P = v1 · · · vr be a path (we call such a path a v1vr-
path). The vertices v1 and vr are the ends or end-vertices of P , and the vertices
v2, . . . , vr−1 are the inner vertices of P . We say that an edge vivj , i + 1 < j, is
an inner chord of P if vi or vj is an inner vertex of P . Distinct paths P1, . . . , P`

in a graph G are mutually induced if:

(i) each Pi has no inner chords;
(ii) any distinct Pi, Pj may only share vertices that are ends of both paths;
(iii) no inner vertex u of any Pi is adjacent to a vertex v of some Pj for j 6= i,

except when v is an end-vertex of both Pi and Pj .

Notice that condition (i) may be assumed without loss of generality. This defini-
tion is more general than the definition in Section 1, as it allows the end-vertices
of distinct paths to be the same or adjacent. We can now formally state our
decision problem (where a terminal is some specified vertex).

Requirement Induced Disjoint Paths

Instance: a graph G, k pairs of distinct terminals (s1, t1), . . . , (sk, tk) such
that {si, ti} 6= {sj , tj} for 0 ≤ i < j ≤ k, and k positive integers
r1, . . . , rk.

Question: does G have ` = r1 + . . . + rk mutually induced paths P1, . . . , P`

such that exactly ri of these paths join si and ti for 1 ≤ i ≤ k?

If r1 = . . . = rk = 1, then the problem is called Induced Disjoint Paths. The
paths P1, . . . , P` are said to form a solution for a given instance, and we call
every such path a solution path.

The problem definition allows a vertex v to be a terminal in two or more pairs
(si, ti) and (sj , tj). For instance, v = si = sj is possible. This corresponds to
property (ii) of our definition of “being mutually induced”. In order to avoid any
confusion, we will view si and sj as two different terminals “placed on” vertex v.
Formally, we call v a terminal vertex that represents a terminal si or ti if v = si
or v = ti, respectively. We let Tv denote the set of terminals represented by v. If
Tv = ∅, we call v a non-terminal vertex. We say that the two terminals si and ti
of a terminal pair (si, ti) are partners of each other. If si is represented by u and
ti by v, then we also call a uv-path an siti-path. By our problem definition, each
terminal pair (si, ti) consists of two distinct terminals. Hence, two partners are
never represented by the same vertex.

By Property (i), each solution path P has no inner chords and P is an induced
path if and only if its ends are non-adjacent. If two adjacent vertices u and v

represent terminals vertices belonging to the same pair (si, ti), then the path uv
is called a terminal path for si, ti. We need the following observation.

Observation 1 Any yes-instance of Requirement Induced Disjoint Paths
has a solution that contains all possible terminal paths. In particular, a terminal
path for a pair (si, ti) is the unique siti-path in this solution if ri = 1.

Graph Classes Recall the definition of circular-arc and interval graphs from the
introduction. Both graph types can be recognized in linear time and a corre-
sponding representation can be found in linear time:

Theorem 1 ([3], see also [13, 17]). An interval graph G with n vertices and
m edges can be recognized in O(n+m) time. In the same time, a representation
of G can be constructed with interval end-points 1, . . . , 2n.

Theorem 2 ([20]). A circular-arc graph G with n vertices and m edges can be
recognized in O(n + m) time. In the same time, a representation of G can be
constructed with arc end-points clockwise enumerated as 1, . . . , 2n.

By Theorems 1 and 2, we always assume that an interval or circular-arc graph
is given both by its adjacency list and its representation. Moreover, we assume
that all the end-points of the intervals/arcs in the representation are distinct
integers 1, . . . , 2n. Notice that using a representation we can check adjacency in
O(1) time. By slight abuse of notation, we often do not distinguish between the
vertices and their corresponding intervals/arcs; e.g., we may speak of terminal
intervals/arcs instead of terminal vertices.

For a vertex u of an interval graph, lu and ru denote the left and right end-
point of u, respectively. Note that the degree of u is at least (ru − lu − 1)/2.
For circular-arc graphs, we equate “left” to “counterclockwise” and “right” to
“clockwise”. Then, in the same way as for interval graphs, we let lu and ru denote
the left and right end-point of a vertex u, respectively. In this way we are able
to define similar terminology for both interval and circular-arc graphs. For two
points x, y on the line, we write x ≤ y if y lies to the right with respect to x,
and x < y if x ≤ y and x 6= y, and we say that a point z lies between points
x and y, if x ≤ z ≤ y. If x, y, z are points on a circle we write x ≤ z ≤ y (or
x ≤ z and z ≤ y) to indicate that z is in the interval with the left end-point x
and the right end-point y. We say that a vertex u lies between points x and y if
x ≤ lu < ru ≤ y (recall that lu and ru are distinct integers). Finally, a vertex u
lies between two other vertices v, w if it lies between rv and lw; note that in that
case we have in fact that rv < lu < ru < lw by our assumption on the interval
representation.

An independent set in a graph G is a set of vertices that are pairwise non-
adjacent. At some stage, our algorithm for Induced Disjoint Paths on circular-
arc graphs needs to compute a largest independent set of a circular-arc graph.
This takes linear time:

Theorem 3 ([11]). If the arc end-points of a circular-arc graph G are sorted,
then a largest independent set of G can be found in O(n) time.

3 Interval Graphs

In this section we develop a linear-time algorithm that solves Requirement
Induced Disjoint Paths on interval graphs.1 A possible approach would be
the following greedy algorithm: find a terminal vertex with the leftmost right
end-point and trace path(s) for the corresponding terminal pairs by a greedy
procedure that iteratively chooses the non-terminal vertex with the leftmost
right end-point that does not conflict with vertices already chosen. However, we
do not elaborate on this approach for two reasons. First, this approach would
require a thorough case analysis (just like our algorithm, and thus not be sub-
stantially simpler). Second, and more importantly, the goal of this paper is to
design a linear-time algorithm for Induced Disjoint Paths on circular-arc
graphs, where we have no natural starting point for a similar greedy approach
and guessing such a starting point would irrevocably lead to a quadratic-time
algorithm.

We describe the main constructs of our algorithm. Consider an instance of
Requirement Induced Disjoint Paths. Let P be an siti-path that is not
a terminal path, i.e. that has at least one inner vertex. Let IP be the interval
on the line obtained by taking the union of the intervals that correspond to
the inner vertices of P . We say that P covers the interval IP . Because P is an
siti-path, we say that IP has color i.

Lemma 1. Let P1, . . . , P` form a solution. The following statements hold:

i) For 1 ≤ i ≤ k, any interval IPa
with color i intersects the intervals that

represent si and ti and does not intersect any other terminal interval;
ii) For 1 ≤ a < b ≤ `, IPa

∩ IPb
= ∅;

iii) For 1 ≤ i < j ≤ k, there is no interval with color j that lies between two
intervals with color i, or vice versa.

We now outline our algorithm. Following Observation 1, we take all terminal
paths into the solution. This might reduce the requirement ri by 1 for some i.
To find the remaining paths for all i, we determine a set of “candidate paths”
that might or might not be used in the solution that we are constructing. The
set of candidate paths is constructed such that for any siti solution path P
there is a candidate path P ′ such that P ′ is also an siti-path and IP ′ ⊆ IP . We
guarantee that the set of candidate paths has size O(n). By Lemma 1, the paths
that are selected in a solution must cover distinct parts of the line. Therefore, we
create an auxiliary interval graph H that consists of all intervals covered by the
candidate paths. The intervals covered by candidate siti-paths all receive color
i, for i = 1, . . . , k. It then suffices to find an independent set with the required
number of vertices of each color in H.

In the remainder of this section, we describe all steps of the algorithm in
detail. We say that a step is safe if it runs in time O(n + m + k) and is correct
in the following sense:

1 Due the space restrictions some proofs in this section and in the next ones are
omitted or sketched. The full paper, with complete proofs, can be found in [10].

(i) a No-answer is given for no-instances only;
(ii) if a new instance is obtained, then it has a solution if and only if the original

instance has a solution.
(iii) if a set of intervals that are all colored with color i is added to H, then this

set has size O(n) and corresponds to a candidate set of candidate paths.

The algorithm assumes that an interval representation of G is known, as given
by Theorem 1. It also maintains an auxiliary interval graph H, initially empty.
Recall that any vertex that we add to H will correspond to a candidate path for
a solution. While adding vertices to H, we maintain an interval representation
of H. Finally, the algorithm maintains a set P of paths, initially empty, which
will form a solution for the instance (should it be a yes-instance). We let T =
{s1, t1, . . . , sk, tk} be the set of all terminals. A terminal pair (si, ti) is a multi-
pair if ri ≥ 2, and a simple pair otherwise. The algorithm roughly consists of
three stages: preprocess, construct H, and find an independent set.

3.1 Stage I: Preprocess

The only operations performed on G by our algorithm are vertex deletions.
Hence, the graph that we obtain after each step is still interval. For simplicity,
we denote this graph by G as well.

Step 1. Delete all non-terminal vertices that are adjacent to at least three
terminal vertices.

Step 2. Check if there is a multi-pair that is represented by two non-adjacent
terminal vertices. If so, then return a No-answer.

Lemma 2. Steps 1 and 2 are safe.

Suppose that we have not returned a No-answer after performing Step 2. In
the next step, for each multi-pair, we identify a set of paths that together with
the terminal paths form all candidate paths.

Step 3. For each non-terminal vertex u adjacent to terminal vertices v and w
representing multi-pair terminals si and ti, add Ivuw with color i to VH , and
delete u from G.

Lemma 3. Step 3 is safe. Moreover, for any multi-pair (si, ti), if P is a solution
siti-path with at least one inner vertex, then there is a candidate siti-path P ′

with IP ′ ⊆ IP .

In the next two steps, which are inspired by our earlier work on Induced
Disjoint Paths [8, 9], we get rid of all adjacent terminal vertices that represent
the same terminal pair. This includes (but is not limited to) all multi-pairs.

Step 4. Find the set Z of all terminal vertices v such that v only represents
terminals whose partners are in NG(v). Delete the vertices of Z and all non-
terminal vertices of NG(Z) from G. Delete from T the terminals of all terminal

pairs (si, ti) with si ∈ Tv or ti ∈ Tv for some v ∈ Z. Put all terminal paths
corresponding to deleted terminal pairs in P.

After Step 4, each terminal vertex represents at least one terminal whose
partner is at distance at least 2. There may still be terminal pairs whose terminals
are represented by adjacent vertices. We deal with such pairs in the next step.

Step 5. Delete all terminals si and ti represented by adjacent terminal vertices
from the terminal list, and delete all common non-terminal neighbors of the
terminal vertices that represent si and ti. Put all terminal paths corresponding
to deleted terminals in P.

Call a terminal pair long if its two terminals are represented by vertices of
distance at least 2. After Step 5, all terminal pairs are long. Therefore, by Step 2,
there are no multi-pairs anymore. Assume that there are k′ ≤ k terminal pairs
left; note that k′ = 0 is possible.

Step 6. Check if there exists a terminal vertex that represents three or more
terminals. If so, then return a No-answer.

After Step 6, a terminal vertex may represent at most two terminals (which
must belong to different terminal pairs). We now observe that terminals should
be ordered, and we let our algorithm find this ordering.

Step 7. Check if there exist three terminal vertices u, v, w such that u and w
represent terminals from the same pair such that lu ≤ lv < lw. If so, then return
a No-answer. Otherwise, order and rename the terminals such that rui

< lvi and
lvi
≤ lui+1

for i = 1, . . . , k′ − 1, where ui, vi are the vertices representing si, ti,
respectively.
Step 8. For i ∈ {1, . . . , k′−1}, if ti and si+1 are represented by distinct vertices
u and v, delete all non-terminal vertices adjacent to both u and v.

Lemma 4. Steps 4–8 are safe.

3.2 Stage II: Construct H

We now construct the auxiliary H. Note that some intervals were already added
to H as part of our preprocessing stage (see Step 3).

Step 9. For each i ∈ {1, . . . , k′}, perform steps 9a–9d (where u and v are terminal
vertices that represent si and ti, respectively).

9a. For every common neighbor w of u and v, add the interval Iuwv to H with
color i, and delete w from G.

9b. For each neighbor x of u not adjacent to v, determine whether there exists a
neighbor y of v adjacent to x. If so, then choose y such that the right end-point
of y is leftmost amongst all such neighbours of v. Add the interval Iuxyv to H
with color i.

9c. Determine the connected components C1, . . . , Cp of G− (N [u]∪N [v]) whose
vertices lie between ru and lv. For each Cj , determine the vertex l(Cj) with the

leftmost left end-point and the vertex r(Cj) with the rightmost right end-point.
Then among the neighbors that l(Cj) and u have in common, let si(Cj) be the
one with the rightmost left end-point (if it exists). Similarly, let ti(Cj) be the
neighbor that r(Cj) and v have in common and that has the leftmost right end-
point (if it exists). Add the interval between the left end-point of si(Cj) and the
right end-point of ti(Cj) to H with color i, if it has not been added already in
Step 9b (which might be the case if si(Cj) and ti(Cj) intersect).

Lemma 5. Step 9 is safe. Moreover, for i = 1, . . . , k′, if P is a solution siti-
path, then there is a candidate siti-path P ′ with IP ′ ⊆ IP .

Proof. We first prove that Step 9 is correct. Let i ∈ {1, . . . , k′}. Let u and v be
the (non-adjacent) vertices of G representing si and ti, respectively. Let P be a
solution path for (si, ti).

Suppose that P has length 2. Then P has exactly one inner vertex w, which
is adjacent to both u and v. By Step 9a, H contains the interval IP .

Suppose that P has length 3. Then P has exactly two inner vertices x and
y′ that are adjacent to u and v, respectively. Let y be the neighbor of v that is
adjacent to x and has the leftmost right end-point among all such vertices. Then
P ′ = uxyv is an siti-path. Notice that IP ′ ⊆ IP by the choice of y and by the
fact that u and v have no common neighbors after Step 9a. Therefore, in any
solution that contains P , P can be replaced P ′. By Step 9b, H contains IP ′ .

Finally, suppose that P has length at least 4. Because P is an induced path,
there is a connected component Cj of G − (N [u] ∪ N [v]) whose vertices all lie
between ru and lv, such that all inner vertices of P except two neighbors of u
and v are in Cj . Let x′ and y′ be the neighbors of u and v on P , respectively.
Let x = si(Cj) and y = ti(Cj). Then from P we can construct an siti-path
P ′ by replacing x′ and y′ with x and y, respectively. Notice that IP ′ ⊆ IP by
the choice of y and by the fact that u and v have no common neighbors after
Step 9a. Therefore, in any solution that contains P , P can be replaced P ′. By
Step 9c, H contains IP ′ .

Observe that the above arguments prove that for i = 1, . . . , k′, if P is a
solution siti-path, then there is a candidate siti-path P ′ with IP ′ ⊆ IP .

We now show how to perform Step 9 in O(n+m) time. In Step 9a, we add all
the intervals that correspond to common neighbors of si and ti for i = 1, . . . , k′,
and delete these common neighbors from G. Common neighbors of si and ti
are not common neighbors of terminals of any other pair by Step 8. Therefore,
Step 9a takes O(n + m) time in total, and O(n) intervals are added to H. In
Step 9b, for i = 1, . . . , k′, we find for each neighbor x of si (recall that x is
not adjacent to ti after Step 9a), the neighbor y of ti such that x and y are
adjacent and the right end-point of y is leftmost. By using the adjacency lists
for the neighbors of u, Step 9b takes O(n+m) time in total, and O(n) intervals
are added to H. In Step 9c, we first find the connected components C1, . . . , C`.
This can be done by performing a breadth-first search. Because the connected
components that we consider (and their vertices) are unique to a terminal pair,
Step 9c takes O(n+m) time in total. Again, O(n) intervals are added to H. ut

3.3 Stage III: Find Independent Set

It remains to find a particular independent set in H.

Step 10. Find an independent set in H that, for i = 1, . . . , k, contains exactly
ri−1 or ri vertices colored i depending on whether (si, ti) is a multi-pair or not.
If such a set exists, add the corresponding candidate paths to P and return P.
Otherwise, return a No-answer.

Lemma 6. Step 10 is safe.

Proof. We first prove that Step 10 is correct. We do this by proving that our
instance is a yes-instance if and only if H has an independent set as described in
Step 10. First, suppose that H has such an independent set I. For each interval
u of color i, we can find an siti-path in G with inner vertices that are used to
construct u. Taking into account the terminal paths that are already included
in P, we obtain ri siti-paths for each i ∈ {1, . . . , k}. We have to show that these
paths are mutually induced. Because I is an independent set, distinct paths
have no adjacent inner vertices. It remains to show that each u ∈ I does not
intersect any terminal vertex (interval) of G except the vertices representing
si, ti. If u is added to H in Step 3, then it follows immediately from the fact that
all non-terminal vertices that are adjacent to at least three terminals are deleted
in Step 1 and from the description of Step 3. If u is added to H in Step 9, then
notice u does not intersect any terminal vertex deleted in Step 4, because we
delete them together with adjacent non-terminal vertices. Similarly, it does not
interfere with any terminal deleted in Step 5, as proved in Lemma 4. Moreover,
each interval added in Step 9 intersects exactly two remaining terminal vertices
that are partners by Step 8. Hence, the instance is a yes-instance.

Now suppose that our instance is a yes-instance. Let `i = ri − 1 if (si, ti)
is a multi-pair, and let `i = ri otherwise. By Observation 1, we can assume
that the solution includes all terminal paths. Therefore, the solution contains
exactly `i siti-path with inner vertices. By Lemma 3 and Lemma 5, for each
such solution siti-path P , there is a candidate siti path P ′ such that IP ′ ⊆ IP .
Therefore, we can replace each solution path by a candidate path, and obtain
a solution that uses only candidate paths. Let I denote the set of intervals
covered by these paths. By Lemma 1, the intervals of I do not intersect each
other. Moreover, by construction, I contains `i intervals with color i. Therefore,
H has an independent set as described in Step 10.

We now show how to perform Step 10 in O(n + m) time. We do this by
performing the following procedure, which is a modification of the well-known
greedy algorithm for finding a largest independent set in an interval graph.

1. Construct 2n buckets L1, . . . , L2n and 2n buckets R1, . . . , R2n.

2. For each vertex u of H, put u in the buckets Llu and Rru .

3. Set I = ∅ and h = 2n. For i = 1, . . . , k, set `i = ri−1 if (si, ti) is a multi-pair,
and set `i = ri otherwise.

4. Scan the buckets Lh, . . . , L1 until we find a bucket Lj that contains a vertex
u of H of some color i such that `i > 0. Then u is included in I. Find the set
of vertices X from the buckets Rj , . . . , Rh, and delete them from H. Then set
`i = `i − 1, h = j, and repeat the procedure. We stop as soon as we cannot find
the next bucket Lj .

If I contains less than `i vertices of color i for some i ∈ {1, . . . , k}, then stop
and return a No-answer. Otherwise, return I. This procedure takes O(|V (H)|) =
O(n) time, and the corresponding paths can be found in O(n+m) time. Hence,
it remains to show that the procedure is correct. We need the following claim
(proof omitted).

Claim 1. Let Ui, Uj be the set of vertices (intervals) of H colored by distinct
colors i and j respectively. Then for any u ∈ Ui and v ∈ Uj, lu 6= lv. Moreover,
if lu < lv for some u ∈ Ui and v ∈ Uj, then lx < ly for any x ∈ Ui and y ∈ Uj.

Claim 1 implies that between the left endpoints of two intervals with a color i
there can be no left endpoint of an interval with color j 6= i. Then, similar as the
correctness of the well-known greedy algorithm for finding a largest independent
set in an interval graphs, we can argue that the above procedure outputs the
required independent set. ut

As each step in our algorithm is safe, we obtain the following result.

Theorem 4. The Requirement Induced Disjoint Paths problem can be
solved in time O(n + m + k) for interval graphs on n vertices and m edges with
k terminal pairs.

4 Circular-Arc Graphs

In this section, we modify the algorithm of the previous section to work for the
Induced Disjoint Paths problem on circular-arc graphs. The general idea
of the approach remains the same, but some preprocessing steps are no longer
needed, and some steps need modification. In particular, we do not need colors
here. We will again show that each step of the algorithm is safe, where the
definition of a safe step remains the same, mutatis mutandis. The algorithm
assumes that an arc representation of G is known, as given by Theorem 2. It
maintains an auxiliary circular-arc graph H, initially empty, in a similar manner
and function as before. It also maintains a set P of paths, initially empty.

The algorithm first performs Step 1. Note that Steps 2 and 3 are not neces-
sary, as there are no multi-pairs now, and thus we do not apply them. We then
continue with Steps 4 and 5.

Lemma 7. Steps 1, 4, and 5 are safe.

After Step 5, for each remaining terminal pairs (si, ti), si and ti are repre-
sented by vertices at distance at least two, and as before, we call such pairs long.

Let k′ be the number of remaining terminal pairs. Notice that it can happen
that k′ ≤ 1 after Step 5. It is convenient to handle this case separately.

Step 5+. If k′ = 0, then stop and return the solution P. If k′ = 1, then consider
the terminal vertices u and v representing the terminals of the unique pair of T .
Find a shortest uv-path P if it exists. If P exists, then add P to P, and return
the solution P. Otherwise, stop and return a No-answer.

Lemma 8. Step 5+ is safe.

Now we can assume that k′ ≥ 2. Since all pairs are long and k′ ≥ 2, there is
only one direction around the circle that a solution path can go, and therefore,
intuitively, the problem starts to behave roughly as it does on interval graphs.
We perform Steps 6, 7, 8, and 9, where in Step 9 we do not color the vertices.

Lemma 9. Steps 6, 7, 8, and 9 are safe. Moreover, for i = 1, . . . , k′, if P is a
solution siti-path, then there is a candidate siti-path P ′ with IP ′ ⊆ IP .

Finally, we execute the following simplified version of Step 10.

Step 10∗. Find a largest independent set in H using Theorem 3. If such a set
exists, add the corresponding candidate paths to P and return P. Otherwise,
return a No-answer.

Lemma 10. Step 10∗ is safe.

As each step in our algorithm is safe, we obtain the following result.

Theorem 5. The Induced Disjoint Paths problem can be solved in time
O(n+m+ k) for circular-arc graphs on n vertices and m edges with k terminal
pairs.

5 Conclusion

We gave a linear-time algorithm for Requirement Induced Disjoint Paths
on interval graphs, and for Induced Disjoint Paths on circular-arc graphs.
By the application of the same ideas, we can solve Requirement Induced
Disjoint Paths on n-vertex circular-arc graphs in time O(n2). The increase in
running time is because to solve the auxiliary problem of finding a multicolored
independent set we must “guess” a starting point for the greedy selection of such
a set. As an aside, we can prove that finding a multicolored independent set is
NP-complete when no order on the colors is given, even on interval graphs [10].

References

1. R. Belmonte, P.A. Golovach, P. Heggernes, P. van ’t Hof, M. Kaminski and D.
Paulusma, Detecting fixed patterns in chordal graphs in polynomial time. Algo-
rithmica 69 (2014) 501–521.

2. D. Bienstock. On the complexity of testing for odd holes and induced odd paths.
Discrete Mathematics 90 (1991) 85–92. See also Corrigendum, Discrete Mathemat-
ics 102 (1992) 109.

3. K.S. Booth and G.S. Lueker, Testing for the consecutive ones property, interval
graphs, and graph planarity using PQ-tree algorithms. J. Comput. Syst. Sci. 13
(1976), 335–379.

4. R. Diestel, Graph Theory. Springer-Verlag, Electronic Edition, 2005.
5. M.R. Fellows. The Robertson–Seymour theorems: A survey of applications. Proc.

of the AMS-IMS-SIAM Joint Summer Research Conference, Contemporary Math-
ematics, vol. 89, American Mathematical Society, Providence (1989) 1–18.

6. J. Fiala, M. Kamiński, B. Lidicky, and D. Paulusma. The k-in-a-path problem for
claw-free graphs. Algorithmica 62 (2012) 499-519.

7. F.V. Fomin, I. Todinca, and Y. Villanger. Large induced subgraphs via triangula-
tions and CMSO. In: Proc. SODA 2014, SIAM (2014) 582–593.

8. P.A. Golovach, D. Paulusma and E.J. van Leeuwen, Induced disjoint paths in AT-
free graphs. In: Proc. SWAT 2012, LNCS 7357 (2012) 153–164.

9. P.A. Golovach, D. Paulusma and E.J. van Leeuwen, Induced disjoint paths in claw-
free graphs. In: Proc. ESA 2012, LNCS 7501 (2012) 515–526.

10. P.A. Golovach, D. Paulusma and E.J. van Leeuwen, Induced disjoint paths in
circular-arc graphs in linear time. CoRR abs/1403.0789 (2014).

11. M.C. Golumbic and P.L Hammer. Stability in circular arc graphs. J. Algorithms 9
(1988) 56–63.

12. F. Gurski, E. Wanke. Vertex disjoint paths on clique-width bounded graphs. Theor.
Comput. Sci. 359 (2006) 188–199.

13. M. Habib, R.M. McConnell, C. Paul, and L. Viennot. Lex-BFS and partition re-
finement, with applications to transitive orientation, interval graph recognition and
consecutive ones testing. Theor. Comput. Sci. 234(2000) 59–84.

14. P. Heggernes, P. van ’t Hof, R. Saei, E.J. van Leeuwen. Finding disjoint paths in
split graphs. In: Proc. SOFSEM 2014, LNCS 8327 (2014) 315–326.

15. R.M. Karp. On the complexity of combinatorial problems. Networks 5 (1975) 45–
68.

16. Y. Kobayashi and K. Kawarabayashi. A linear time algorithm for the induced
disjoint paths problem in planar graphs. J. Comput. Syst. Sci. 78 (2012) 670–680.

17. N. Korte and R.H. Möhring. An incremental linear–time algorithm for recognizing
interval graphs SIAM J. Computing 18 (1989) 68–81.

18. M. Kramer, J. van Leeuwen. The complexity of wirerouting and finding minimum
area layouts for arbitrary VLSI circuits. Adv. Comput. Res. 2 (1984), 129–146.

19. J.F. Lynch. The equivalence of theorem proving and the interconnection problem.
SIGDA Newsletter 5 (1975) 31–36.

20. R.M. McConnell. Linear-time recognition of circular-arc graphs. Algorithmica 37
(2003) 93–147.

21. S. Natarajan, A.P. Sprague. Disjoint paths in circular arc graphs. Nordic J. Com-
puting 3 (1996) 256–270.

22. B.A. Reed. Tree width and tangles: A new connectivity measure and some appli-
cations. In: Surveys in Combinatorics Cambridge University Press, (1997) 87–162.

23. B.A. Reed, N. Robertson, A. Schrijver, P.D. Seymour. Finding disjoint trees in
planar graphs in linear time. In: Contemporary Mathematics vol. 147, American
Mathematical Society (1993) 295–301.

24. N. Robertson and P.D. Seymour. Graph minors. XIII. The disjoint paths problem.
Journal of Combinatorial Theory, Series B 63 (1995) 65–110.

