A modulator of a graph G to a specified graph class H is a set of vertices
whose deletion puts G into H. The cardinality of a modulator to various
tractable graph classes has long been used as a structural parameter which can
be exploited to obtain FPT algorithms for a range of hard problems. Here we
investigate what happens when a graph contains a modulator which is large but
"well-structured" (in the sense of having bounded rank-width). Can such
modulators still be exploited to obtain efficient algorithms? And is it even
possible to find such modulators efficiently?
We first show that the parameters derived from such well-structured
modulators are strictly more general than the cardinality of modulators and
rank-width itself. Then, we develop an FPT algorithm for finding such
well-structured modulators to any graph class which can be characterized by a
finite set of forbidden induced subgraphs. We proceed by showing how
well-structured modulators can be used to obtain efficient parameterized
algorithms for Minimum Vertex Cover and Maximum Clique. Finally, we use
well-structured modulators to develop an algorithmic meta-theorem for deciding
problems expressible in Monadic Second Order (MSO) logic, and prove that this
result is tight in the sense that it cannot be generalized to LinEMSO problems.Comment: Accepted at WADS 201