1,096 research outputs found

    Adaptation of Chain Event Graphs for use with Case-Control Studies in Epidemiology

    Get PDF
    Case-control studies are used in epidemiology to try to uncover the causes of diseases, but are a retrospective study design known to suffer from non-participation and recall bias, which may explain their decreased popularity in recent years. Traditional analyses report usually only the odds ratio for given exposures and the binary disease status. Chain event graphs are a graphical representation of a statistical model derived from event trees which have been developed in artificial intelligence and statistics, and only recently introduced to the epidemiology literature. They are a modern Bayesian technique which enable prior knowledge to be incorporated into the data analysis using the agglomerative hierarchical clustering algorithm, used to form a suitable chain event graph. Additionally, they can account for missing data and be used to explore missingness mechanisms. Here we adapt the chain event graph framework to suit scenarios often encountered in case-control studies, to strengthen this study design which is time and financially efficient. We demonstrate eight adaptations to the graphs, which consist of two suitable for full case-control study analysis, four which can be used in interim analyses to explore biases, and two which aim to improve the ease and accuracy of analyses. The adaptations are illustrated with complete, reproducible, fully-interpreted examples, including the event tree and chain event graph. Chain event graphs are used here for the first time to summarise non-participation, data collection techniques, data reliability, and disease severity in case-control studies. We demonstrate how these features of a case-control study can be incorporated into the analysis to provide further insight, which can help to identify potential biases and lead to more accurate study results

    Generative Artificial Intelligence Through ChatGPT and Other Large Language Models in Ophthalmology: Clinical Applications and Challenges

    Get PDF
    The rapid progress of large language models (LLMs) driving generative artificial intelligence applications heralds the potential of opportunities in health care. We conducted a review up to April 2023 on Google Scholar, Embase, MEDLINE, and Scopus using the following terms: “large language models,” “generative artificial intelligence,” “ophthalmology,” “ChatGPT,” and “eye,” based on relevance to this review. From a clinical viewpoint specific to ophthalmologists, we explore from the different stakeholders’ perspectives—including patients, physicians, and policymakers—the potential LLM applications in education, research, and clinical domains specific to ophthalmology. We also highlight the foreseeable challenges of LLM implementation into clinical practice, including the concerns of accuracy, interpretability, perpetuating bias, and data security. As LLMs continue to mature, it is essential for stakeholders to jointly establish standards for best practices to safeguard patient safety. Financial Disclosure(s): Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article

    Quantifying landscape-level methane fluxes in subarctic Finland using a multiscale approach

    Get PDF
    Journal ArticleQuantifying landscape-scale methane (CH4) fluxes from boreal and arctic regions, and determining how they are controlled, is critical for predicting the magnitude of any CH4 emission feedback to climate change. Furthermore, there remains uncertainty regarding the relative importance of small areas of strong methanogenic activity, vs. larger areas with net CH4 uptake, in controlling landscape-level fluxes. We measured CH4 fluxes from multiple microtopographical subunits (sedge-dominated lawns, interhummocks and hummocks) within an aapa mire in subarctic Finland, as well as in drier ecosystems present in the wider landscape, lichen heath and mountain birch forest. An intercomparison was carried out between fluxes measured using static chambers, up-scaled using a high-resolution landcover map derived from aerial photography and eddy covariance. Strong agreement was observed between the two methodologies, with emission rates greatest in lawns. CH4 fluxes from lawns were strongly related to seasonal fluctuations in temperature, but their floating nature meant that water-table depth was not a key factor in controlling CH4 release. In contrast, chamber measurements identified net CH4 uptake in birch forest soils. An intercomparison between the aerial photography and satellite remote sensing demonstrated that quantifying the distribution of the key CH4 emitting and consuming plant communities was possible from satellite, allowing fluxes to be scaled up to a 100 km2 area. For the full growing season (May to October), ~ 1.1-1.4 g CH4 m-2 was released across the 100 km2 area. This was based on up-scaled lawn emissions of 1.2-1.5 g CH4 m-2, vs. an up-scaled uptake of 0.07-0.15 g CH4 m-2 by the wider landscape. Given the strong temperature sensitivity of the dominant lawn fluxes, and the fact that lawns are unlikely to dry out, climate warming may substantially increase CH4 emissions in northern Finland, and in aapa mire regions in general.This work was carried out within the Natural Environment Research Council (NERC) funded Arctic Biosphere Atmosphere Coupling at Multiple Scales (ABACUS) project (a contribution to International Polar Year 2007_2008) plus NERC small grant NE/F010222/1 awarded to RB and BH. We are grateful for the support of the staff at the Kevo Subarctic Research Institute, to David Sayer for operation and maintenance of the eddy covariance apparatus, and to Lorna English for helping with the analysis of the CH4 samples. We also thank the NERC Field Spectroscopy Facility for support in ground data collection for the remote sensing analysis. Finally, we wish to express our gratitude to two anonymous reviewers whose comments and suggestions substantially improved the manuscript

    Uniqueness of Gibbs Measure for Models With Uncountable Set of Spin Values on a Cayley Tree

    Full text link
    We consider models with nearest-neighbor interactions and with the set [0,1][0,1] of spin values, on a Cayley tree of order k≄1k\geq 1. It is known that the "splitting Gibbs measures" of the model can be described by solutions of a nonlinear integral equation. For arbitrary k≄2k\geq 2 we find a sufficient condition under which the integral equation has unique solution, hence under the condition the corresponding model has unique splitting Gibbs measure.Comment: 13 page

    Numerical Modeling of Fluid Flow in Solid Tumors

    Get PDF
    A mathematical model of interstitial fluid flow is developed, based on the application of the governing equations for fluid flow, i.e., the conservation laws for mass and momentum, to physiological systems containing solid tumors. The discretized form of the governing equations, with appropriate boundary conditions, is developed for a predefined tumor geometry. The interstitial fluid pressure and velocity are calculated using a numerical method, element based finite volume. Simulations of interstitial fluid transport in a homogeneous solid tumor demonstrate that, in a uniformly perfused tumor, i.e., one with no necrotic region, because of the interstitial pressure distribution, the distribution of drug particles is non-uniform. Pressure distribution for different values of necrotic radii is examined and two new parameters, the critical tumor radius and critical necrotic radius, are defined. Simulation results show that: 1) tumor radii have a critical size. Below this size, the maximum interstitial fluid pressure is less than what is generally considered to be effective pressure (a parameter determined by vascular pressure, plasma osmotic pressure, and interstitial osmotic pressure). Above this size, the maximum interstitial fluid pressure is equal to effective pressure. As a consequence, drugs transport to the center of smaller tumors is much easier than transport to the center of a tumor whose radius is greater than the critical tumor radius; 2) there is a critical necrotic radius, below which the interstitial fluid pressure at the tumor center is at its maximum value. If the tumor radius is greater than the critical tumor radius, this maximum pressure is equal to effective pressure. Above this critical necrotic radius, the interstitial fluid pressure at the tumor center is below effective pressure. In specific ranges of these critical sizes, drug amount and therefore therapeutic effects are higher because the opposing force, interstitial fluid pressure, is low in these ranges

    Conformal algebra: R-matrix and star-triangle relation

    Full text link
    The main purpose of this paper is the construction of the R-operator which acts in the tensor product of two infinite-dimensional representations of the conformal algebra and solves Yang-Baxter equation. We build the R-operator as a product of more elementary operators S_1, S_2 and S_3. Operators S_1 and S_3 are identified with intertwining operators of two irreducible representations of the conformal algebra and the operator S_2 is obtained from the intertwining operators S_1 and S_3 by a certain duality transformation. There are star-triangle relations for the basic building blocks S_1, S_2 and S_3 which produce all other relations for the general R-operators. In the case of the conformal algebra of n-dimensional Euclidean space we construct the R-operator for the scalar (spin part is equal to zero) representations and prove that the star-triangle relation is a well known star-triangle relation for propagators of scalar fields. In the special case of the conformal algebra of the 4-dimensional Euclidean space, the R-operator is obtained for more general class of infinite-dimensional (differential) representations with nontrivial spin parts. As a result, for the case of the 4-dimensional Euclidean space, we generalize the scalar star-triangle relation to the most general star-triangle relation for the propagators of particles with arbitrary spins.Comment: Added references and corrected typo

    DDRugging glioblastoma: understanding and targeting the DNA damage response to improve future therapies.

    Get PDF
    Glioblastoma is the most frequently diagnosed type of primary brain tumour in adults. These aggressive tumours are characterised by inherent treatment resistance and disease progression, contributing to ~190,000 brain-tumour related deaths globally each year. Current therapeutic interventions consist of surgical resection followed by radiotherapy and temozolomide chemotherapy, but average survival is typically around 1 year, with less than 10% of patients surviving more than 5 years. Recently, a fourth treatment modality of intermediate-frequency low-intensity electric fields [called tumour-treating fields ( TTFields)] was clinically approved for glioblastoma in some countries after it was found to increase median overall survival rates by ~5 months in a phase III randomised clinical trial. However, beyond these treatments, attempts to establish more effective therapies have yielded little improvement in survival for patients over the last 50 years. This is in contrast to many other types of cancer and highlights glioblastoma as a recognised tumour of unmet clinical need. Previous work has revealed that glioblastomas contain stem-cell-like subpopulations that exhibit heightened expression of DNA damage response (DDR) factors, contributing to therapy resistance and disease relapse. Given that radiotherapy, chemotherapy and TTFields-based therapies all impact DDR mechanisms, this Review will focus on our current knowledge of the role of the DDR in glioblastoma biology and treatment. We also discuss the potential of effective multi-modal targeting of the DDR combined with standard-of-care therapies, as well as emerging therapeutic targets, in providing much-needed improvements in survival rates for patients

    Linkage Mapping and Comparative Genomics Using Next-Generation RAD Sequencing of a Non-Model Organism

    Get PDF
    Restriction-site associated DNA (RAD) sequencing is a powerful new method for targeted sequencing across the genomes of many individuals. This approach has broad potential for genetic analysis of non-model organisms including genotype-phenotype association mapping, phylogeography, population genetics and scaffolding genome assemblies through linkage mapping. We constructed a RAD library using genomic DNA from a Plutella xylostella (diamondback moth) backcross that segregated for resistance to the insecticide spinosad. Sequencing of 24 individuals was performed on a single Illumina GAIIx lane (51 base paired-end reads). Taking advantage of the lack of crossing over in homologous chromosomes in female Lepidoptera, 3,177 maternally inherited RAD alleles were assigned to the 31 chromosomes, enabling identification of the spinosad resistance and W/Z sex chromosomes. Paired-end reads for each RAD allele were assembled into contigs and compared to the genome of Bombyx mori (n = 28) using BLAST, revealing 28 homologous matches plus 3 expected fusion/breakage events which account for the difference in chromosome number. A genome-wide linkage map (1292 cM) was inferred with 2,878 segregating RAD alleles inherited from the backcross father, producing chromosome and location specific sequenced RAD markers. Here we have used RAD sequencing to construct a genetic linkage map de novo for an organism that has no previous genome data. Comparative analysis of P. xyloxtella linkage groups with B. mori chromosomes shows for the first time, genetic synteny appears common beyond the Macrolepidoptera. RAD sequencing is a powerful system capable of rapidly generating chromosome specific data for non-model organisms

    The 10th Biennial Hatter Cardiovascular Institute workshop: cellular protection—evaluating new directions in the setting of myocardial infarction, ischaemic stroke, and cardio-oncology

    Get PDF
    Due to its poor capacity for regeneration, the heart is particularly sensitive to the loss of contractile cardiomyocytes. The onslaught of damage caused by ischaemia and reperfusion, occurring during an acute myocardial infarction and the subsequent reperfusion therapy, can wipe out upwards of a billion cardiomyocytes. A similar program of cell death can cause the irreversible loss of neurons in ischaemic stroke. Similar pathways of lethal cell injury can contribute to other pathologies such as left ventricular dysfunction and heart failure caused by cancer therapy. Consequently, strategies designed to protect the heart from lethal cell injury have the potential to be applicable across all three pathologies. The investigators meeting at the 10th Hatter Cardiovascular Institute workshop examined the parallels between ST-segment elevation myocardial infarction (STEMI), ischaemic stroke, and other pathologies that cause the loss of cardiomyocytes including cancer therapeutic cardiotoxicity. They examined the prospects for protection by remote ischaemic conditioning (RIC) in each scenario, and evaluated impasses and novel opportunities for cellular protection, with the future landscape for RIC in the clinical setting to be determined by the outcome of the large ERIC-PPCI/CONDI2 study. It was agreed that the way forward must include measures to improve experimental methodologies, such that they better reflect the clinical scenario and to judiciously select combinations of therapies targeting specific pathways of cellular death and injury
    • 

    corecore