76 research outputs found
Magnetic flux jumps in textured Bi2Sr2CaCu2O(8+d)
Magnetic flux jumps in textured Bi2Sr2CaCu2O(8+d) have been studied by means
of magnetization measurements in the temperature range between 1.95 K and Tc,
in an external magnetic field up to 9 T. Flux jumps were found in the
temperature range 1.95 K - 6 K, with the external magnetic field parallel to
the c axis of the investigated sample. The effect of sample history on magnetic
flux jumping was studied and it was found to be well accounted for by the
available theoretical models. The magnetic field sweep rate strongly influences
the flux jumping and this effect was interpreted in terms of the influence of
both flux creep and the thermal environment of the sample. Strong flux creep
was found in the temperature and magnetic field range where flux jumps occur
suggesting a relationship between the two. The heat exchange conditions between
the sample and the experimental environment also influence the flux jumping
behavior. Both these effects stabilize the sample against flux instabilities,
and this stabilizing effect increases with decreasing magnetic field sweep
rate. Demagnetizing effects are also shown to have a significant influence on
flux jumping.Comment: 10 pages, 6 figures, RevTeX4, submitted to Phys. Rev.
Suppression of Superconducting Critical Current Density by Small Flux Jumps in Thin Films
By doing magnetization measurements during magnetic field sweeps on thin
films of the new superconductor , it is found that in a low temperature
and low field region small flux jumps are taking place. This effect strongly
suppresses the central magnetization peak leading to reduced nominal
superconducting critical current density at low temperatures. A borderline for
this effect to occur is determined on the field-temperature (H-T) phase
diagram. It is suggested that the small size of the flux jumps in films is due
to the higher density of small defects and the relatively easy thermal
diffusion in thin films in comparison with bulk samples.Comment: 7 figures Phys. Rev. B accepted scheduled issue: 01 Feb 200
Local threshold field for dendritic instability in superconducting MgB2 films
Using magneto-optical imaging the phenomenon of dendritic flux penetration in
superconducting films was studied. Flux dendrites were abruptly formed in a 300
nm thick film of MgB2 by applying a perpendicular magnetic field. Detailed
measurements of flux density distributions show that there exists a local
threshold field controlling the nucleation and termination of the dendritic
growth. At 4 K the local threshold field is close to 12 mT in this sample,
where the critical current density is 10^7 A/cm^2. The dendritic instability in
thin films is believed to be of thermo-magnetic origin, but the existence of a
local threshold field, and its small value are features that distinctly
contrast the thermo-magnetic instability (flux jumps) in bulk superconductors.Comment: 6 pages, 6 figures, submitted to Phys. Rev.
Search for a heavy composite Majorana neutrino in events with dilepton signatures from proton-proton collisions at √s=13 Tev
Results are presented of a search for a heavy Majorana neutrino N ⠃ decaying into two same-flavor leptons ⠃ (electrons or muons) and a quark-pair jet. A model is considered in which the N ⠃ is an excited neutrino in a compositeness scenario. The analysis is performed using a sample of proton-proton collisions at & RADIC;s = 13 TeV recorded by the CMS experiment at the CERN LHC, corresponding to an integrated luminosity of 138 fb-1. The data are found to be in agreement with the standard model prediction. For the process in which the N ⠃ is produced in association with a lepton, followed by the decay of the N ⠃ to a same-flavor lepton and a quark pair, an upper limit at 95% confidence level on the product of the cross section and branching fraction is obtained as a function of the N ⠃ mass mN ⠃ and the compositeness scale ⠄. For this model the data exclude the existence of Ne (N & mu;) for mN ⠃ below 6.0 (6.1) TeV, at the limit where mN ⠃ is equal to ⠄. For mN ⠃ N 1 TeV, values of ⠄ less than 20 (23) TeV are excluded. These results represent a considerable improvement in sensitivity, covering a larger parameter space than previous searches in pp collisions at 13 TeV.& COPY; 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons .org /licenses /by /4 .0/). Funded by SCOAP3
Search for new heavy resonances decaying to WW, WZ, ZZ, WH, or ZH boson pairs in the all-jets final state in proton-proton collisions at s=13TeV
A search for new heavy resonances decaying to WW, WZ, ZZ, WH, or ZH boson pairs in the all-jets final state is presented. The analysis is based on proton-proton collision data recorded by the CMS detector in 2016–2018 at a centre-of-mass energy of 13 TeV at the CERN LHC, corresponding to an integrated luminosity of 138 fb−1. The search is sensitive to resonances with masses between 1.3 and 6TeV, decaying to bosons that are highly Lorentz-boosted such that each of the bosons forms a single large-radius jet. Machine learning techniques are employed to identify such jets. No significant excess over the estimated standard model background is observed. A maximum local significance of 3.6 standard deviations, corresponding to a global significance of 2.3 standard deviations, is observed at masses of 2.1 and 2.9 TeV. In a heavy vector triplet model, spin-1 Z′ and W′ resonances with masses below 4.8TeV are excluded at the 95% confidence level (CL). These limits are the most stringent to date. In a bulk graviton model, spin-2 gravitons and spin-0 radions with masses below 1.4 and 2.7TeV, respectively, are excluded at 95% CL. Production of heavy resonances through vector boson fusion is constrained with upper cross section limits at 95% CL as low as 0.1 fb. © 2023 The Author(s
Pulsar Wind Nebulae with Bow Shocks: Non-thermal Radiation and Cosmic Ray Leptons
Pulsars with high spin-down power produce relativistic winds radiating a non-negligible fraction of this power over the whole electromagnetic range from radio to gamma-rays in the pulsar wind nebulae (PWNe). The rest of the power is dissipated in the interactions of the PWNe with the ambient interstellar medium (ISM). Some of the PWNe are moving relative to the ambient ISM with supersonic speeds producing bow shocks. In this case, the ultrarelativistic particles accelerated at the termination surface of the pulsar wind may undergo reacceleration in the converging flow system formed by the plasma outflowing from the wind termination shock and the plasma inflowing from the bow shock. The presence of magnetic perturbations in the flow, produced by instabilities induced by the accelerated particles themselves, is essential for the process to work. A generic outcome of this type of reacceleration is the creation of particle distributions with very hard spectra, such as are indeed required to explain the observed spectra of synchrotron radiation with photon indices Γ≲ 1.5. The presence of this hard spectral component is specific to PWNe with bow shocks (BSPWNe). The accelerated particles, mainly electrons and positrons, may end up containing a substantial fraction of the shock ram pressure. In addition, for typical ISM and pulsar parameters, the e+ released by these systems in the Galaxy are numerous enough to contribute a substantial fraction of the positrons detected as cosmic ray (CR) particles above few tens of GeV and up to several hundred GeV. The escape of ultrarelativistic particles from a BSPWN—and hence, its appearance in the far-UV and X-ray bands—is determined by the relative directions of the interstellar magnetic field, the velocity of the astrosphere and the pulsar rotation axis. In this respect we review the observed appearance and multiwavelength spectra of three different types of BSPWNe: PSR J0437-4715, the Guitar and Lighthouse nebulae, and Vela-like objects. We argue that high resolution imaging of such objects provides unique information both on pulsar winds and on the ISM. We discuss the interpretation of imaging observations in the context of the model outlined above and estimate the BSPWN contribution to the positron flux observed at the Earth
The safety and efficacy of chronically implanted subdural electrodes: A prospective study
A search for doubly charged higgs production in z0 decays
Contains fulltext :
124394.pdf (preprint version ) (Open Access
- …
