278 research outputs found

    Nonlinear magnetic response in ruthenocuprates

    Get PDF
    We have performed an investigation of the nonlinear magnetic response in ruthenocuprates. A negative, diverging-like peak at the main magnetic transition T_N in RuSr2RECu2O8 (RE = Gd, Y) indicates a possible canted antiferromagnetic order. Another well defined feature above T_N points to a blocking of superparamagnetic particles through the T^(-3) dependence of the third harmonic at higher temperatures. Below T_N a nondiverging peak appears, which is strongly affected by the addition of 10% of Cu ions in the RuO2 planes. In RuSr2RE(2-x)Ce(x)Cu2O10 the main magnetic transition T_M is accompanied by two characteristic temperatures in the third harmonic of the ac susceptibility, in agreement with recent studies from uSR and Mossbauer spectroscopy. We find that the spin-spin correlation temperature is the same in both families of ruthenocuprates.Comment: accepted for publication in EPJ

    Identification of neprilysin as a potential target of arteannuin using computational drug repositioning

    Get PDF
    ABSTRACT The discovery of arteannuin (qinghaosu) in the 20th Century was a major advance for medicine. Besides functioning as a malaria therapy, arteannuin is a pharmacological agent in a range of other diseases, but its mechanism of action remains obscure. In this study, the reverse docking server PharmMapper was used to identify potential targets of arteannuin. The results were checked using the chemical-protein interactome servers DRAR-CPI and DDI-CPI, and verified by AutoDock Vina. The results showed that neprilysin (also known as CD10), a common acute lymphoblastic leukaemia antigen, was the top disease-related target of arteannuin. The chemical-protein interactome and docking results agreed with those of PharmMapper, further implicating neprilysin as a potential target. Although experimental verification is required, this study provides guidance for future pharmacological investigations into novel clinical applications for arteannuin

    Alginate-nanohydroxyapatite hydrogel system: Optimizing the formulation for enhanced bone regeneration

    Get PDF
    Ceramic/polymer-based biocomposites have emerged as potential biomaterials to fill, replace, repair or regenerate injured or diseased bone, due to their outstanding features in terms of biocompatibility, bioactivity, injectability, and biodegradability. However, these properties can be dependent on the amount of ceramic component present in the polymer-based composite. Therefore, in the present study, the influence of nanohydroxyapatite content (30 to 70 wt%) on alginate-based hydrogels was studied in order to evaluate the best formulation for maximizing bone tissue regeneration. The composite system was characterized in terms of physic-chemical properties and biological response, with in vitro cytocompatibility assessment with human osteoblastic cells and ex vivo functional evaluation in embryonic chick segmental bone defects. The main morphological characteristics of the alginate network were not affected by the addition of nanohydroxyapatite. However, physic-chemical features, like water-swelling rate, stability at extreme pH values, apatite formation, and Ca2+ release were nanoHA dose-dependent. Within in vitro cytocompatibility assays it was observed that hydrogels with nanoHA 30% content enhanced osteoblastic cells proliferation and expression of osteogenic transcription factors, while those with higher concentrations (50 and 70%) decreased the osteogenic cell response. Ex vivo data underlined the in vitro findings, revealing an enhanced collagenous deposition, trabecular bone formation and matrix mineralization with Alg-nanoHA30 composition, while compositions with higher nanoHA content induced a diminished bone tissue response. The outcomes of this study indicate that nanohydroxyapatite concentration plays a major role in physic-chemical properties and biological response of the composite system and the optimization of the components ratio must be met to maximize bone tissue regeneration.This work was financed by FEDER – Fundo Europeu de Desenvolvimento Regional funds through the COMPETE 2020 – Operacional Programme for Competitiveness and Internationalisation (POCI), Portugal 2020, by Portuguese funds through FCT/MCTES in the framework of the project “institute for Research and Innovation in Health Sciences” (POCI-01-0145-FEDER-007274), by Project Biotherapies (NORTE-01-0145-FEDER-000012) and by Joana Barrosʼ PhD grant (SFRH/BD/102148/2014). The authors would also like to acknowledge Rui Rocha (CEMUP), Rui Fernandes (HEMS), Rossana Correia (HEMS) and Liliana Grenho (FMDUP).info:eu-repo/semantics/publishedVersio

    Solar Wind Turbulence and the Role of Ion Instabilities

    Get PDF
    International audienc

    Origins of the Ambient Solar Wind: Implications for Space Weather

    Full text link
    The Sun's outer atmosphere is heated to temperatures of millions of degrees, and solar plasma flows out into interplanetary space at supersonic speeds. This paper reviews our current understanding of these interrelated problems: coronal heating and the acceleration of the ambient solar wind. We also discuss where the community stands in its ability to forecast how variations in the solar wind (i.e., fast and slow wind streams) impact the Earth. Although the last few decades have seen significant progress in observations and modeling, we still do not have a complete understanding of the relevant physical processes, nor do we have a quantitatively precise census of which coronal structures contribute to specific types of solar wind. Fast streams are known to be connected to the central regions of large coronal holes. Slow streams, however, appear to come from a wide range of sources, including streamers, pseudostreamers, coronal loops, active regions, and coronal hole boundaries. Complicating our understanding even more is the fact that processes such as turbulence, stream-stream interactions, and Coulomb collisions can make it difficult to unambiguously map a parcel measured at 1 AU back down to its coronal source. We also review recent progress -- in theoretical modeling, observational data analysis, and forecasting techniques that sit at the interface between data and theory -- that gives us hope that the above problems are indeed solvable.Comment: Accepted for publication in Space Science Reviews. Special issue connected with a 2016 ISSI workshop on "The Scientific Foundations of Space Weather." 44 pages, 9 figure

    Rho GTPase function in flies: insights from a developmental and organismal perspective.

    Get PDF
    Morphogenesis is a key event in the development of a multicellular organism and is reliant on coordinated transcriptional and signal transduction events. To establish the segmented body plan that underlies much of metazoan development, individual cells and groups of cells must respond to exogenous signals with complex movements and shape changes. One class of proteins that plays a pivotal role in the interpretation of extracellular cues into cellular behavior is the Rho family of small GTPases. These molecular switches are essential components of a growing number of signaling pathways, many of which regulate actin cytoskeletal remodeling. Much of our understanding of Rho biology has come from work done in cell culture. More recently, the fruit fly Drosophila melanogaster has emerged as an excellent genetic system for the study of these proteins in a developmental and organismal context. Studies in flies have greatly enhanced our understanding of pathways involving Rho GTPases and their roles in development

    Cotton in the new millennium: advances, economics, perceptions and problems

    Get PDF
    Cotton is the most significant natural fibre and has been a preferred choice of the textile industry and consumers since the industrial revolution began. The share of man-made fibres, both regenerated and synthetic fibres, has grown considerably in recent times but cotton production has also been on the rise and accounts for about half of the fibres used for apparel and textile goods. To cotton’s advantage, the premium attached to the presence of cotton fibre and the general positive consumer perception is well established, however, compared to commodity man-made fibres and high performance fibres, cotton has limitations in terms of its mechanical properties but can help to overcome moisture management issues that arise with performance apparel during active wear. This issue of Textile Progress aims to: i. Report on advances in cotton cultivation and processing as well as improvements to conventional cotton cultivation and ginning. The processing of cotton in the textile industry from fibre to finished fabric, cotton and its blends, and their applications in technical textiles are also covered. ii. Explore the economic impact of cotton in different parts of the world including an overview of global cotton trade. iii. Examine the environmental perception of cotton fibre and efforts in organic and genetically-modified (GM) cotton production. The topic of naturally-coloured cotton, post-consumer waste is covered and the environmental impacts of cotton cultivation and processing are discussed. Hazardous effects of cultivation, such as the extensive use of pesticides, insecticides and irrigation with fresh water, and consequences of the use of GM cotton and cotton fibres in general on the climate are summarised and the effects of cotton processing on workers are addressed. The potential hazards during cotton cultivation, processing and use are also included. iv. Examine how the properties of cotton textiles can be enhanced, for example, by improving wrinkle recovery and reducing the flammability of cotton fibre
    corecore