753 research outputs found

    Adatoms and nanoengineering of carbon

    Full text link
    We present a new and general mechanism for inter-conversion of carbon structures via a catalytic exchange process, which operates under conditions of Frenkel pair generation. The mechanism typically lowers reaction barriers by a factor of four compared to equivilent uncatalysed reactions. We examine the relevance of this mechanism for fullerene growth, carbon onions and nanotubes, and dislocations in irradiated graphite.Comment: 3 Figures, 5 Page letter accepted for publication in Chemical Physics Letter

    Semantic-based policy engineering for autonomic systems

    No full text
    This paper presents some important directions in the use of ontology-based semantics in achieving the vision of Autonomic Communications. We examine the requirements of Autonomic Communication with a focus on the demanding needs of ubiquitous computing environments, with an emphasis on the requirements shared with Autonomic Computing. We observe that ontologies provide a strong mechanism for addressing the heterogeneity in user task requirements, managed resources, services and context. We then present two complimentary approaches that exploit ontology-based knowledge in support of autonomic communications: service-oriented models for policy engineering and dynamic semantic queries using content-based networks. The paper concludes with a discussion of the major research challenges such approaches raise

    Compositional tuning of ferromagnetism in Ga1-xMnxP

    Get PDF
    We report the magnetic and transport properties of Ga1-xMnxP synthesized via ion implantation followed by pulsed laser melting over a range of x, namely 0.018 to 0.042. Like Ga1-xMnxAs, Ga1-xMnxP displays a monotonic increase of the ferromagnetic Curie temperature with x associated with the hole-mediated ferromagnetic phase while thermal annealing above 300 C leads to a quenching of ferromagnetism that is accompanied by a reduction of the substitutional fraction of Mn. However, contrary to observations in Ga1-xMnxAs, Ga1-xMnxP is non-metallic over the entire composition range. At the lower temperatures over which the films are ferromagnetic, hole transport occurs via hopping conduction in a Mn-derived band; at higher temperatures it arises from holes in the valence band which are thermally excited across an energy gap that shrinks with x.Comment: To be published in Solid State Communication

    Impact of infection control interventions on rates of Staphylococcus aureus bacteraemia in National Health Service acute hospitals, East Midlands, UK, using interrupted time-series analysis

    Get PDF
    Background: Reducing healthcare-associated infection (HCAI) is a UK national priority. Multiple national and regional interventions aimed at reduction have been implemented in National Health Service acute hospitals, but assessment of their effectiveness is methodologically challenging. Aim: To assess the effectiveness of national and regional interventions undertaken between 2004 and 2008 on rates of meticillin-resistant Staphylococcus aureus (MRSA) and meticillin-sensitive Staphylococcus aureus (MSSA) bacteraemia within acute hospitals in the East Midlands, using interrupted time-series analysis. Methods: We used segmented regression to compare rates of MRSA and MSSA bacteraemia in the pre-intervention, implementation, and post-intervention phases for combined intervention packages in eight acute hospitals. Findings: Most of the change in MSSA and MRSA rates occurred during the implementation phase. During this phase, there were significant downward trends in MRSA rates for seven of eight acute hospital groups; in four, this was a steeper quarter-on-quarter decline compared with the pre-intervention phase, and, in one, an upward trend in the pre-intervention phase was reversed. Regarding MSSA, there was a significant positive effect in four hospital groups: one upward trend during the pre-intervention phase was reversed, two upward trends plateaued, and in one hospital group an indeterminate trend decreased significantly. However, there were significant increasing trends in quarterly MSSA rates in four hospital groups during the implementation or post-intervention periods. Conclusion The impact of interventions varied by hospital group but the overall results suggest that national and regional campaigns had a beneficial impact on MRSA and MSSA bacteraemia within the East Midlands

    Graphene based superconducting quantum point contacts

    Full text link
    We investigate the Josephson effect in the graphene nanoribbons of length LL smaller than the superconducting coherence length and an arbitrary width WW. We find that in contrast to an ordinary superconducting quantum point contact (SQPC) the critical supercurrent IcI_c is not quantized for the nanoribbons with smooth and armchair edges. For a low concentration of the carriers IcI_c decreases monotonically with lowering W/LW/L and tends to a constant minimum for a narrow nanoribbon with Wâ‰ČLW\lesssim L. The minimum IcI_c is zero for the smooth edges but eΔ0/ℏe\Delta_{0}/\hbar for the armchair edges. At higher concentrations of the carriers this monotonic variation acquires a series of peaks. Further analysis of the current-phase relation and the Josephson coupling strength IcRNI_cR_N in terms of W/LW/L and the concentration of carriers revels significant differences with those of an ordinary SQPC. On the other hand for a zigzag nanoribbon we find that, similar to an ordinary SQPC, IcI_c is quantized but to the half-integer values (n+1/2)4eΔ0/ℏ(n+1/2)4e\Delta_{0}/\hbar.Comment: 8 pages, 5 figure

    High-field magnetization study of the S = 1/2 antiferromagnetic Heisenberg chain [PM Cu(NO3_3)2_2(H2_2O)2_2]n_n with a field-induced gap

    Full text link
    We present a high-field magnetization study of the SS = 1/2 antiferromagnetic Heisenberg chain [PM Cu(NO3_3)2_2(H2_2O)2_2]n_n. For this material, as result of the Dzyaloshinskii-Moriya interaction and a staggered gg tensor, the ground state is characterized by an anisotropic field-induced spin excitation gap and a staggered magnetization. Our data reveal the qualitatively different behavior in the directions of maximum and zero spin excitation gap. The data are analyzed via exact diagonalization of a linear spin chain with up to 20 sites and on basis of the Bethe ansatz equations, respectively. For both directions we find very good agreement between experimental data and theoretical calculations. We extract the magnetic coupling strength J/kBJ/k_B along the chain direction to 36.3(5) K and determine the field dependence of the staggered magnetization component msm_s.Comment: 5 pages, 2 figures (minor changes to manuscript and figures

    Ideal Spin Filters: Theoretical Study of Electron Transmission Through Ordered and Disordered Interfaces Between Ferromagnetic Metals and Semiconductors

    Full text link
    It is predicted that certain atomically ordered interfaces between some ferromagnetic metals (F) and semiconductors (S) should act as ideal spin filters that transmit electrons only from the majority spin bands or only from the minority spin bands of the F to the S at the Fermi energy, even for F with both majority and minority bands at the Fermi level. Criteria for determining which combinations of F, S and interface should be ideal spin filters are formulated. The criteria depend only on the bulk band structures of the S and F and on the translational symmetries of the S, F and interface. Several examples of systems that meet these criteria to a high degree of precision are identified. Disordered interfaces between F and S are also studied and it is found that intermixing between the S and F can result in interfaces with spin anti-filtering properties, the transmitted electrons being much less spin polarized than those in the ferromagnetic metal at the Fermi energy. A patent application based on this work has been commenced by Simon Fraser University.Comment: RevTeX, 12 pages, 5 figure

    Design, development and testing of multi-functional non-linear ultrasonic instrumentation for the detection of defects and damage in CFRP materials and structures

    Get PDF
    Copyright © 2013 Elsevier. NOTICE: this is the author’s version of a work that was accepted for publication in Composites Science and Technology. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Composites Science and Technology Vol. 87 (2013), DOI: 10.1016/j.compscitech.2013.07.014A multi-functional non-linear ultrasonic testing approach is presented for in situ and ex-situ detection of a variety of defects (e.g. micro-cracking, delamination and disbonding) induced by various damage mechanisms (stress, impact, heat) in CFRP materials and structures. Such multi-functionality is provided via programmable and re-configurable instrumentation that incorporates a wide range of non-linear ultrasonic testing regimes, including harmonic and overtone generation, inter-modulation product generation, resonant frequency shift and pulse-inversion techniques. The capabilities of this multi-functional approach to defect detection are demonstrated by examining CFRP samples subjected to various forms of damage, specifically stress, impact and heat induced damage. We show that the multi-functional non-linear approach is well-suited to the detection of such forms of damage and that the pulse-inversion technique, largely ‘ignored’ in the CFRP literature, potentially provides a powerful, but as yet un-tapped, simple and effective route to the defect and damage detection

    Assessment of the Noise Reduction Potential of Advanced Subsonic Transport Concepts for NASA's Environmentally Responsible Aviation Project

    Get PDF
    Aircraft system noise is predicted for a portfolio of NASA advanced concepts with 2025 entry-into-service technology assumptions. The subsonic transport concepts include tube-and-wing configurations with engines mounted under the wing, over the wing nacelle integration, and a double deck fuselage with engines at a mid-fuselage location. Also included are hybrid wing body aircraft with engines upstream of the fuselage trailing edge. Both advanced direct drive engines and geared turbofan engines are modeled. Recent acoustic experimental information was utilized in the prediction for several key technologies. The 301-passenger class hybrid wing body with geared ultra high bypass engines is assessed at 40.3 EPNLdB cumulative below the Stage 4 certification level. Other hybrid wing body and unconventional tube-and-wing configurations reach levels of 33 EPNLdB or more below the certification level. Many factors contribute to the system level result; however, the hybrid wing body in the 301-passenger class, as compared to a tubeand- wing with conventional engine under wing installation, has 11.9 EPNLdB of noise reduction due to replacing reflection with acoustic shielding of engine noise sources. Therefore, the propulsion airframe aeroacoustic interaction effects clearly differentiate the unconventional configurations that approach levels close to or exceed the 42 EPNLdB goal
    • 

    corecore