553 research outputs found

    Karakter Morfologi dan Genetik Lunella sp.

    Get PDF
    Environmental degradation and the utilization of excess are very influential in a reduction of thepotential of Turbinidae Gastropod Resources. Morphology of shells can changes due to adaptation tothe surrounding environment resulting in misidentification. This study aims to analyze morphology andmolecular character of Turbinidae. Morphometric analysis is done by comparing the measureddimensions of the shell, while the molecular identification is done by using the DNA barcoding usingCOI gene to species identification. The results showed a comparison of growth between thedimensions shell of the Lunella sp. showed the negative allometric and positive allometric. Characterof shell growth between dimensions of the Lunella sp. shows the negative allometric and positiveallometric. Molecular analysis identified Turbinidae was found Lunella sp. its similar to DNAsequence Lunella sp. Sulawesi. The molecular analysis identifies Turbinidae found is Lunella sp. withsimilarities of 98.41 and 98.31%. The environmental conditions can affect change the morphology andgenetic of Turbinidae. DNA barcoding has been successful to identify Turbinidae gastropods.Degradasi lingkungan dan pemanfaatan berlebih sangat berpengaruh dalam penurunan potensisumberdaya gastopoda Turbinidae. Morfologi cangkang dapat berubah akibat adaptasi terhadaplingkungan sekitar yang mengakibatkan terjadinya kesalahan identifikasi. Penelitian ini bertujuanuntuk dengan menganalisis karakter morfologi dan molekuler Turbinidae. Analisis morfometrikdilakukan dengan membandingkan dimensi cangkang yang terukur, sedangkan identifikasi molekulerdilakukan dengan menggunakan DNA barcoding gen CO1 dalam mengidentifikasi spesies. Hasilpenelitian memperlihatkan perbadingan sifat pertumbuhan antar dimensi cangkang Lunella sp.menunjukan perbandingan pertumbuhan allometrik negatif dan allometrik positif. Analisis molekulermengidentifikasi Turbinidae yang ditemukan adalah Lunella sp. dengan tingkat kemiripan 98.41 dan98.31 %. Perubahan kondisi lingkungan dapat mempengaruhi perubahan karakter morfologi dangenetik gastropoda Turbinidae. Barcode DNA telah berhasil mengidentifikasi gastropoda Turbinidae

    Solid State Systems for Electron Electric Dipole Moment and other Fundamental Measurements

    Full text link
    In 1968, F.L. Shapiro published the suggestion that one could search for an electron EDM by applying a strong electric field to a substance that has an unpaired electron spin; at low temperature, the EDM interaction would lead to a net sample magnetization that can be detected with a SQUID magnetometer. One experimental EDM search based on this technique was published, and for a number of reasons including high sample conductivity, high operating temperature, and limited SQUID technology, the result was not particularly sensitive compared to other experiments in the late 1970's. Advances in SQUID and conventional magnetometery had led us to reconsider this type of experiment, which can be extended to searches and tests other than EDMs (e.g., test of Lorentz invariance). In addition, the complementary measurement of an EDM-induced sample electric polarization due to application of a magnetic field to a paramagnetic sample might be effective using modern ultrasensitive charge measurement techniques. A possible paramagnetic material is Gd-substituted YIG which has very low conductivity and a net enhancement (atomic enhancement times crystal screening) of order unity. Use of a reasonable volume (100's of cc) sample of this material at 50 mK and 10 kV/cm might yield an electron EDM sensitivity of 103310^{-33} e cm or better, a factor of 10610^6 improvement over current experimental limits.Comment: 6 pages. Prepared for ITAMP workshop on fundamental physics that was to be held Sept 20-22 2001 in Cambride, MA, but was canceled due to terrorist attack on U.S New version incorporates a number of small changes, most notably the scaling of the sensitivity of the Faraday magnetometer with linewidth is now treated in a saner fashion. The possibility of operating at an even lower temperarture, say 10 microkelvin, is also discusse

    Application of regulatory sequence analysis and metabolic network analysis to the interpretation of gene expression data

    Get PDF
    We present two complementary approaches for the interpretation of clusters of co-regulated genes, such as those obtained from DNA chips and related methods. Starting from a cluster of genes with similar expression profiles, two basic questions can be asked: 1. Which mechanism is responsible for the coordinated transcriptional response of the genes? This question is approached by extracting motifs that are shared between the upstream sequences of these genes. The motifs extracted are putative cis-acting regulatory elements. 2. What is the physiological meaning for the cell to express together these genes? One way to answer the question is to search for potential metabolic pathways that could be catalyzed by the products of the genes. This can be done by selecting the genes from the cluster that code for enzymes, and trying to assemble the catalyzed reactions to form metabolic pathways. We present tools to answer these two questions, and we illustrate their use with selected examples in the yeast Saccharomyces cerevisiae. The tools are available on the web (http://ucmb.ulb.ac.be/bioinformatics/rsa-tools/; http://www.ebi.ac.uk/research/pfbp/; http://www.soi.city.ac.uk/~msch/)

    Structural analysis of X-Linked Retinoschisis mutations reveals distinct classes which differentially effect retinoschisin function

    Get PDF
    Retinoschisin, an octameric retinal-specific protein, is essential for retinal architecture with mutations causing X-linked retinoschisis (XLRS), a monogenic form of macular degeneration. Most XLRS-associated mutations cause intracellular retention, however a subset are secreted as octamers and the cause of their pathology is ill-defined. Therefore, here we investigated the solution structure of the retinoschisin monomer and the impact of two XLRS-causing mutants using a combinatorial approach of biophysics and cryo-EM. The retinoschisin monomer has an elongated structure which persists in the octameric assembly. Retinoschisin forms a dimer of octamers with each octameric ring adopting a planar propeller structure. Comparison of the octamer with the hexadecamer structure indicated little conformational change in the retinoschisin octamer upon dimerization, suggesting that the octamer provides a stable interface for construction of the hexadecamer. The H207Q XLRS-associated mutation was found in the interface between octamers and destabilized both monomeric and octameric retinoschisin. Octamer dimerization is consistent with the adhesive function of retinoschisin supporting interactions between retinal cell layers, so disassembly would prevent structural coupling between opposing membranes. In contrast, cryo-EM structural analysis of the R141H mutation at ~4.2Å resolution was found to only cause a subtle conformational change in the propeller tips, potentially perturbing an interaction site. Together, these findings support distinct mechanisms of pathology for two classes of XLRS-associated mutations in the retinoschisin assembly

    Weakly bound atomic trimers in ultracold traps

    Full text link
    The experimental three-atom recombination coefficients of the atomic states 23^{23}NaF=1,mF=1>|F=1,m_F=-1>, 87^{87}RbF=1,mF=1>|F=1,m_F=-1> and 85^{85}RbF=2,mF=2>|F=2,m_F=-2>, together with the corresponding two-body scattering lengths, allow predictions of the trimer bound state energies for such systems in a trap. The recombination parameter is given as a function of the weakly bound trimer energies, which are in the interval 1<m(a/)2E3<6.9 1<m(a/\hbar)^2 E_3< 6.9 for large positive scattering lengths, aa. The contribution of a deep-bound state to our prediction, in the case of 85^{85}RbF=2,mF=2>|F=2,m_F=-2>, for a particular trap, is shown to be relatively small.Comment: 5 pages, 1 figur

    Dual Vortex Theory of Strongly Interacting Electrons: Non-Fermi Liquid to the (Hard) Core

    Full text link
    As discovered in the quantum Hall effect, a very effective way for strongly-repulsive electrons to minimize their potential energy is to aquire non-zero relative angular momentum. We pursue this mechanism for interacting two-dimensional electrons in zero magnetic field, by employing a representation of the electrons as composite bosons interacting with a Chern-Simons gauge field. This enables us to construct a dual description in which the fundamental constituents are vortices in the auxiliary boson fields. The resulting formalism embraces a cornucopia of possible phases. Remarkably, superconductivity is a generic feature, while the Fermi liquid is not -- prompting us to conjecture that such a state may not be possible when the interactions are sufficiently strong. Many aspects of our earlier discussions of the nodal liquid and spin-charge separation find surprising incarnations in this new framework.Comment: Modified dicussion of the hard-core model, correcting several mistake

    Survey of nucleon electromagnetic form factors

    Full text link
    A dressed-quark core contribution to nucleon electromagnetic form factors is calculated. It is defined by the solution of a Poincare' covariant Faddeev equation in which dressed-quarks provide the elementary degree of freedom and correlations between them are expressed via diquarks. The nucleon-photon vertex involves a single parameter; i.e., a diquark charge radius. It is argued to be commensurate with the pion's charge radius. A comprehensive analysis and explanation of the form factors is built upon this foundation. A particular feature of the study is a separation of form factor contributions into those from different diagram types and correlation sectors, and subsequently a flavour separation for each of these. Amongst the extensive body of results that one could highlight are: r_1^{n,u}>r_1^{n,d}, owing to the presence of axial-vector quark-quark correlations; and for both the neutron and proton the ratio of Sachs electric and magnetic form factors possesses a zero.Comment: 43 pages, 17 figures, 12 tables, 5 appendice

    Low intensity pulsed ultrasound (LIPUS) for bone healing: A clinical practice guideline

    Get PDF
    Does low intensity pulsed ultrasound (LIPUS) accelerate recovery in adults and children who have experienced bone fractures or osteotomy (cutting of a bone)? An expert panel rapidly produced these recommendations based on a linked systematic review triggered by a large multi-centre randomised trial in adults with tibial fracture

    The Atmospheric Chemistry Suite (ACS) of Three Spectrometers for the ExoMars 2016 Trace Gas Orbiter

    Get PDF
    The Atmospheric Chemistry Suite (ACS) package is an element of the Russian contribution to the ESA-Roscosmos ExoMars 2016 Trace Gas Orbiter (TGO) mission. ACS consists of three separate infrared spectrometers, sharing common mechanical, electrical, and thermal interfaces. This ensemble of spectrometers has been designed and developed in response to the Trace Gas Orbiter mission objectives that specifically address the requirement of high sensitivity instruments to enable the unambiguous detection of trace gases of potential geophysical or biological interest. For this reason, ACS embarks a set of instruments achieving simultaneously very high accuracy (ppt level), very high resolving power (>10,000) and large spectral coverage (0.7 to 17 μm—the visible to thermal infrared range). The near-infrared (NIR) channel is a versatile spectrometer covering the 0.7–1.6 μm spectral range with a resolving power of ∼20,000. NIR employs the combination of an echelle grating with an AOTF (Acousto-Optical Tunable Filter) as diffraction order selector. This channel will be mainly operated in solar occultation and nadir, and can also perform limb observations. The scientific goals of NIR are the measurements of water vapor, aerosols, and dayside or night side airglows. The mid-infrared (MIR) channel is a cross-dispersion echelle instrument dedicated to solar occultation measurements in the 2.2–4.4 μm range. MIR achieves a resolving power of >50,000. It has been designed to accomplish the most sensitive measurements ever of the trace gases present in the Martian atmosphere. The thermal-infrared channel (TIRVIM) is a 2-inch double pendulum Fourier-transform spectrometer encompassing the spectral range of 1.7–17 μm with apodized resolution varying from 0.2 to 1.3 cm−1. TIRVIM is primarily dedicated to profiling temperature from the surface up to ∼60 km and to monitor aerosol abundance in nadir. TIRVIM also has a limb and solar occultation capability. The technical concept of the instrument, its accommodation on the spacecraft, the optical designs as well as some of the calibrations, and the expected performances for its three channels are described
    corecore