8 research outputs found

    EXTRA SPINDLE POLES (Separase) controls anisotropic cell expansion in Norway spruce (Picea abies) embryos independently of its role in anaphase progression

    Get PDF
    The caspase-related protease separase (EXTRA SPINDLE POLES, ESP) plays a major role in chromatid disjunction and cell expansion in Arabidopsis thaliana. Whether the expansion phenotypes are linked to defects in cell division in Arabidopsis ESP mutants remains elusive. Here we present the identification, cloning and characterization of the gymnosperm Norway spruce (Picea abies, Pa) ESP. We used the P. abies somatic embryo system and a combination of reverse genetics and microscopy to explore the roles of Pa ESP during embryogenesis. Pa ESP was expressed in the proliferating embryonal mass, while it was absent in the suspensor cells. Pa ESP associated with kinetochore microtubules in metaphase and then with anaphase spindle midzone. During cytokinesis, it localized on the phragmoplast microtubules and on the cell plate. Pa ESP deficiency perturbed anisotropic expansion and reduced mitotic divisions in cotyledonary embryos. Furthermore, whilst Pa ESP can rescue the chromatid nondisjunction phenotype of Arabidopsis ESP mutants, it cannot rescue anisotropic cell expansion. Our data demonstrate that the roles of ESP in daughter chromatid separation and cell expansion are conserved between gymnosperms and angiosperms. However, the mechanisms of ESP-mediated regulation of cell expansion seem to be lineage-specific

    An NADPH-oxidase/polyamine oxidase feedback loop controls oxidative burst under salinity

    No full text
    The apoplastic polyamine oxidase (PAO) catalyzes the oxidation of the higher polyamines spermidine and spermine, contributing to hydrogen peroxide (H2O2) accumulation. However, it is yet unclear whether apoplastic PAO is part of a network that coordinates the accumulation of reactive oxygen species (ROS) under salinity or if it acts independently. Here, we unravel that NADPH oxidase and apoplastic PAO cooperate to control the accumulation of H2O2and superoxides (O2-) in tobacco (Nicotiana tabacum). To examine to what extent apoplastic PAO constitutes part of a ROS-generating network, we examined ROS accumulation in guard cells of plants overexpressing or down-regulating apoplastic PAO (lines S2.2 and A2, respectively) or down-regulating NADPH oxidase (line AS-NtRbohD/F). The H2O2-specific probe benzene sulfonyl-H2O2showed that, under salinity, H2O2increased in S2.2 and decreased in A2 compared with the wild type. Surprisingly, the O2-specific probe benzene sulfonyl-So showed that O2- levels correlated positively with that of apoplastic PAO (i.e. showed high and low levels in S2.2 and A2, respectively). By using AS-NtRbohD/F lines and a pharmacological approach, we could show that H2O2and O2- accumulation at the onset of salinity stress was dependent on NADPH oxidase, indicating that NADPH oxidase is upstream of apoplastic PAO. Our results suggest that NADPH oxidase and the apoplastic PAO form a feed-forward ROS amplification loop, which impinges on oxidative state and culminates in the execution of programmed cell death. We propose that the PAO/NADPH oxidase loop is a central hub in the plethora of responses controlling salt stress tolerance, with potential functions extending beyond stress tolerance. © 2016 American Society of Plant Biologists. All Rights Reserved

    Peroxisome Biogenesis and Function

    No full text
    corecore