47 research outputs found

    Modeling electrolytically top gated graphene

    Get PDF
    We investigate doping of a single-layer graphene in the presence of electrolytic top gating. The interfacial phenomena is modeled using a modified Poisson-Boltzmann equation for an aqueous solution of simple salt. We demonstrate both the sensitivity of graphene's doping levels to the salt concentration and the importance of quantum capacitance that arises due to the smallness of the Debye screening length in the electrolyte.Comment: 7 pages, including 4 figures, submitted to Nanoscale Research Letters for a special issue related to the NGC 2009 conference (http://asdn.net/ngc2009/index.shtml

    Measurement of prompt D0^{0} and D\overline{D}0^{0} meson azimuthal anisotropy and search for strong electric fields in PbPb collisions at root SNN\sqrt{S_{NN}} = 5.02 TeV

    Get PDF
    The strong Coulomb field created in ultrarelativistic heavy ion collisions is expected to produce a rapiditydependent difference (Av2) in the second Fourier coefficient of the azimuthal distribution (elliptic flow, v2) between D0 (uc) and D0 (uc) mesons. Motivated by the search for evidence of this field, the CMS detector at the LHC is used to perform the first measurement of Av2. The rapidity-averaged value is found to be (Av2) = 0.001 ? 0.001 (stat)? 0.003 (syst) in PbPb collisions at ?sNN = 5.02 TeV. In addition, the influence of the collision geometry is explored by measuring the D0 and D0mesons v2 and triangular flow coefficient (v3) as functions of rapidity, transverse momentum (pT), and event centrality (a measure of the overlap of the two Pb nuclei). A clear centrality dependence of prompt D0 meson v2 values is observed, while the v3 is largely independent of centrality. These trends are consistent with expectations of flow driven by the initial-state geometry. ? 2021 The Author. Published by Elsevier B.V. This is an open access article under the CC BY licens

    Measurement of the CP-violating phase ϕs_{s} in the B0^{0}s_{s}→J/ψ φ(1020) →μ⁺μ⁻K⁺K⁻ channel in proton-proton collisions at √s = 13 TeV

    Get PDF

    Structure of Dark Triad Dirty Dozen Across Eight World Regions

    Get PDF
    The Dark Triad (i.e., narcissism, psychopathy, Machiavellianism) has garnered intense attention over the past 15 years. We examined the structure of these traits’ measure—the Dark Triad Dirty Dozen (DTDD)—in a sample of 11,488 participants from three W.E.I.R.D. (i.e., North America, Oceania, Western Europe) and five non-W.E.I.R.D. (i.e., Asia, Middle East, non-Western Europe, South America, sub-Saharan Africa) world regions. The results confirmed the measurement invariance of the DTDD across participants’ sex in all world regions, with men scoring higher than women on all traits (except for psychopathy in Asia, where the difference was not significant). We found evidence for metric (and partial scalar) measurement invariance within and between W.E.I.R.D. and non-W.E.I.R.D. world regions. The results generally support the structure of the DTDD

    Measurements of production cross sections of polarized same-sign W boson pairs in association with two jets in proton-proton collisions at s=13 TeV

    Get PDF
    The first measurements of production cross sections of polarized same-sign W±W±boson pairs in proton-proton collisions are reported. The measurements are based on a data sample collected with the CMS detector at the LHC at a center-of-mass energy of 13TeV, corresponding to an integrated luminosity of 137fb−1. Events are selected by requiring exactly two same-sign leptons, electrons or muons, moderate missing transverse momentum, and two jets with a large rapidity separation and a large dijet mass to enhance the contribution of same-sign W±W±scattering events. An observed (expected) 95% confidence level upper limit of 1.17 (0.88)fbis set on the production cross section for longitudinally polarized same-sign W±W±boson pairs. The electroweak production of same-sign W±W±boson pairs with at least one of the Wbosons longitudinally polarized is measured with an observed (expected) significance of 2.3 (3.1) standard deviations.SCOAP

    Effects of the nitric acid concentrations on the etching process, structural and optical properties of porous zinc oxide thin films

    Get PDF
    The present study reports on the fabrication of porous zinc oxide by wet chemical etching. ZnO thin films were deposited via radio-frequency magnetron sputtering on p-type silicon with (111) preferred orientation. The etchants used in the present work were 0.1% and 1.0% nitric acid (HNO3) solutions. ZnO were etched at various times and were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and photoluminescence (PL) spectroscopy to allow the examination of their structural and optical properties. The XRD results revealed that the intensity of ZnO(002) decreased when the thin films were etched in varying HNO3 concentrations over different periods of time. The above observation is attributed to the dissolution of the ZnO(002). The SEM images showed that the thickness of the ZnO layers decreased over the etching time, which resulted from the isotropic etching by the HNO3 solution. The PL emission intensity initially increased with increasing etching time. However, with further etching of the samples, the PL spectra showed a decreasing trend in intensity as a result of the decrease in the surface-to-volume ratio. All results lead to the conclusion that 1.0% HNO3 has the capability to change the ZnO surface significantly

    Solution-gated epitaxial graphene as pH sensor

    No full text
    10.1021/ja805090zJournal of the American Chemical Society1304414392-14393JACS

    The chemistry of graphene

    No full text
    10.1039/b920539jJournal of Materials Chemistry20122277-2289JMAC

    Direct voltammetric detection of DNA and pH sensing on epitaxial graphene: An insight into the role of oxygenated defects

    No full text
    10.1021/ac101519vAnalytical Chemistry82177387-7393ANCH
    corecore