256 research outputs found

    Assembly of functional photosystem complexes in Rhodobacter sphaeroides incorporating carotenoids from the spirilloxanthin pathway

    Get PDF
    Carotenoids protect the photosynthetic apparatus against harmful radicals arising from the presence of both light and oxygen. They also act as accessory pigments for harvesting solar energy, and are required for stable assembly of many light-harvesting complexes. In the phototrophic bacterium Rhodobacter (Rba.) sphaeroides phytoene desaturase (CrtI) catalyses three sequential desaturations of the colourless carotenoid phytoene, extending the number of conjugated carbon–carbon double bonds, N, from three to nine and producing the yellow carotenoid neurosporene; subsequent modifications produce the yellow/red carotenoids spheroidene/spheroidenone (N = 10/11). Genomic crtI replacements were used to swap the native three-step Rba. sphaeroides CrtI for the four-step Pantoea agglomerans enzyme, which re-routed carotenoid biosynthesis and culminated in the production of 2,2′-diketo-spirilloxanthin under semi-aerobic conditions. The new carotenoid pathway was elucidated using a combination of HPLC and mass spectrometry. Premature termination of this new pathway by inactivating crtC or crtD produced strains with lycopene or rhodopin as major carotenoids. All of the spirilloxanthin series carotenoids are accepted by the assembly pathways for LH2 and RC–LH1–PufX complexes. The efficiency of carotenoid-to-bacteriochlorophyll energy transfer for 2,2′-diketo-spirilloxanthin (15 conjugated Cdouble bond; length as m-dashC bonds; N = 15) in LH2 complexes is low, at 35%. High energy transfer efficiencies were obtained for neurosporene (N = 9; 94%), spheroidene (N = 10; 96%) and spheroidenone (N = 11; 95%), whereas intermediate values were measured for lycopene (N = 11; 64%), rhodopin (N = 11; 62%) and spirilloxanthin (N = 13; 39%). The variety and stability of these novel Rba. sphaeroides antenna complexes make them useful experimental models for investigating the energy transfer dynamics of carotenoids in bacterial photosynthesis

    Bis-Tridentate Iridium(III) Phosphors Bearing Functional 2-Phenyl-6-(imidazol-2-ylidene)pyridine and 2-(Pyrazol-3-yl)-6-phenylpyridine Chelates for Efficient OLEDs

    Get PDF
    Proligands to the monoanionic tridentate chelate 4-(tert-butyl)-2-(2,4-difluorophenyl)-6-(3-isopropyl-imidazol-2-ylidene)pyridine ((phpyim-H2)PF6) and dianionic tridentate chelates derived from functional 2-pyrazol-3-yl-6-phenylpyridine chelates, i.e. L1-H2–L5-H2, have been synthesized and characterized. Treatment of (phpyim-H2)PF6 with [Ir(COD)(μ-Cl)]2 in the presence of sodium acetate, followed by heating at 200 °C with 1 equiv of the dianionic chelate, afforded the respective charge-neutral, bis-tridentate Ir(III) complexes [Ir(phpyim)(Ln)] (1–5; n = 1–5). The hydride complex [Ir(phpyim)(L5-H)(H)] (6) was made when the “one-pot” reaction of (phpyim-H2)PF6, [Ir(COD)(μ-Cl)]2, and L5-H2 was carried out at 140 °C. Complex 6 is likely an intermediate in the formation of 5, as it is converted to 5 on heating to 200 °C. Compounds 1–6 have been characterized by NMR spectroscopy and, in the cases of 1, 5, and 6, by X-ray structural analysis. TD-DFT computations confirmed that the emission bands are derived from 3MLCT transitions involving the chelates L1–L5, resulting in a wide range of emission wavelengths from 473 (cyan) to 608 nm (orange-red) observed for 1 – 5. A series of green- and red-emitting organic light-emitting diodes (OLEDs) with a simplified trilayer architecture were fabricated using the as-prepared Ir(III) complexes 2 and 5, respectively. A maximum external quantum efficiency of 18.8%, a luminance efficiency of 58.5 cd/A, and a power efficiency of 57.4 lm/W were obtained for the green-emitting OLEDs (2), which compares with 15.4%, 10.4 cd/A, and 9.0 lm/W obtained for the red-emitting OLEDs (5). The high efficiencies of these OLED devices suggest great potential for these bis-tridentate Ir(III) metal phosphors in the fabrication of multicolored OLED devices

    From Tetraquark to Hexaquark: A Systematic Study of Heavy Exotics in the Large NcN_c Limit

    Get PDF
    A systematic study of multiquark exotics with one or Nc1N_c-1 heavy quarks in the large NcN_c limit is presented. By binding a chiral soliton to a heavy meson, either a normal NcN_c-quark baryon or an exotic (Nc+2)(N_c+2)-quark baryon is obtained. By replacing the heavy quark with Nc1N_c-1 heavy antiquarks, exotic (2Nc2)(2N_c-2)-quark and 2Nc2N_c-quark mesons are obtained. When Nc=3N_c = 3, they are just the normal triquark baryon QqqQqq, the exotic pentaquark baryon QqˉqˉqˉqˉQ\bar q\bar q\bar q\bar q, tetraquark di-meson QˉQˉqq\bar Q \bar Q qq and the hexaquark di-baryon QˉQˉqˉqˉ barqqˉ\bar Q \bar Q \bar q \bar q\ bar q \bar q respectively. Their stabilities and decays are also discussed. In particular, it is shown that the ``heavy to heavy'' semileptonic decays are described by the Isgur--Wise form factors of the normal baryons.Comment: 14 pages in REVTeX, no Figure

    Impact of Iron-site defects on Superconductivity in LiFeAs

    Get PDF
    PW acknowledges funding from the MPG-UBC center and financial support from EPSRC (EP/I031014/1).In conventional s-wave superconductors, only magnetic impurities exhibit impurity bound states, whereas for an s order parameter they can occur for both magnetic and non-magnetic impurities. Impurity bound states in superconductors can thus provide important insight into the order parameter. Here, we present a combined experimental and theoretical study of native and engineered iron-site defects in LiFeAs. Detailed comparison of tunneling spectra measured on impurities with spin fluctuation theory reveals a continuous evolution from negligible impurity bound state features for weaker scattering potential to clearly detectable states for somewhat stronger scattering potentials. All bound states for these intermediate strength potentials are pinned at or close to the gap edge of the smaller gap, a phenomenon that we explain and ascribe to multi-orbital physics.PostprintPeer reviewe

    Long-term follow-up of incomplete stent apposition in patients who received sirolimus-eluting stent for de novo coronary lesions: an intravascular ultrasound analysis.

    Get PDF
    BACKGROUND: Incomplete stent apposition (ISA) has been previously documented after sirolimus-eluting stent (SES) implantation. The aim of this study was to investigate the long-term intravascular ultrasound (IVUS) findings of ISA in patients who received SES. METHODS AND RESULTS: A total of 13 patients who received SES and showed ISA at follow-up IVUS (follow-up I) were investigated. IVUS was performed on all of these patients 12 months later (follow-up II). Quantitative ISA area measurement was also performed at follow-up I and II. No vascular remodeling was observed in the vessel segment with ISA; external elastic membrane area was 19.4+/-6.6 versus 19.5+/-6.4 mm2 at follow-up I and II, respectively. There was also no significant change in external elastic membrane area between vessel segment with ISA and without ISA (+1.5% versus -3.0%, respectively; P=0.27) at late follow-up. The ISA area, either including (2.5+/-1.7 versus 3.8+/-6.3 mm2; P=NS) or excluding (2.5+/-1.8 versus 2.4+/-1.7 mm2; P=NS) a single patient with aneurysm formation, was not significantly different between follow-up I and II. One patient manifested a coronary aneurysm in the stented segment at late follow-up that was probably present at the initial follow-up but masked by thrombus. It was successfully treated with a covered stent. All patients were asymptomatic, and no patient experienced late thrombotic occlusion. CONCLUSIONS: Vessel dimensions and area of ISA did not change over time, except for 1 coronary aneurysm that became apparent. ISA after implantation of a SES was not associated with adverse events at late follow-up

    Very long sirolimus-eluting stent implantation for de novo coronary lesions.

    Get PDF
    Long-length stenting has a poor outcome when bare metal stents are used. The safety and efficacy of the sirolimus-eluting stent (SES) in long lesions has not been evaluated. Therefore, the aim of the present study was to evaluate the clinical and angiographic outcomes of SES implantation over a very long coronary artery segment. Since April 2002, all patients treated percutaneously at our institution received a SES as the device of choice as part of the Rapamycin Eluting Stent Evaluated At Rotterdam Cardiology Hospital (RESEARCH) registry. During the RESEARCH registry, stents were available in lengths of 8, 18, and 33 mm. The present report includes a predefined study population consisting of patients treated with >36-mm-long stented segments. Patients had a combination of >or=2 overlapping stents at a minimum length of 41 mm (i.e., one 33-mm SES overlapping an 8-mm SES) to treat native de novo coronary lesions. The incidence of major cardiac adverse events (death, nonfatal myocardial infarction, and target lesion revascularization) was evaluated. The study group comprised 96 consecutive patients (102 lesions). Clinical follow-up was available for all patients at a mean of 320 days (range 265 to 442). In all, 20% of long-stented lesions were chronic total occlusions, and mean stented length per lesion was 61.2 +/- 21.4 mm (range 41 to 134). Angiographic follow-up at 6 months was obtained in 67 patients (71%). Binary restenosis rate was 11.9% and in-stent late loss was 0.13 +/- 0.47 mm. At long-term follow-up (mean 320 days), there were 2 deaths (2.1%), and the overall incidence of major cardiac events was 8.3%. Thus, SES implantation appears safe and effective for de novo coronary lesions requiring multiple stent placement over a very long vessel segment

    Heavy Quarks and Heavy Quarkonia as Tests of Thermalization

    Full text link
    We present here a brief summary of new results on heavy quarks and heavy quarkonia from the PHENIX experiment as presented at the "Quark Gluon Plasma Thermalization" Workshop in Vienna, Austria in August 2005, directly following the International Quark Matter Conference in Hungary.Comment: 8 pages, 5 figures, Quark Gluon Plasma Thermalization Workshop (Vienna August 2005) Proceeding

    Proximity effect at superconducting Sn-Bi2Se3 interface

    Get PDF
    We have investigated the conductance spectra of Sn-Bi2Se3 interface junctions down to 250 mK and in different magnetic fields. A number of conductance anomalies were observed below the superconducting transition temperature of Sn, including a small gap different from that of Sn, and a zero-bias conductance peak growing up at lower temperatures. We discussed the possible origins of the smaller gap and the zero-bias conductance peak. These phenomena support that a proximity-effect-induced chiral superconducting phase is formed at the interface between the superconducting Sn and the strong spin-orbit coupling material Bi2Se3.Comment: 7 pages, 8 figure

    Centrality Dependence of the High p_T Charged Hadron Suppression in Au+Au collisions at sqrt(s_NN) = 130 GeV

    Get PDF
    PHENIX has measured the centrality dependence of charged hadron p_T spectra from central Au+Au collisions at sqrt(s_NN)=130 GeV. The truncated mean p_T decreases with centrality for p_T > 2 GeV/c, indicating an apparent reduction of the contribution from hard scattering to high p_T hadron production. For central collisions the yield at high p_T is shown to be suppressed compared to binary nucleon-nucleon collision scaling of p+p data. This suppression is monotonically increasing with centrality, but most of the change occurs below 30% centrality, i.e. for collisions with less than about 140 participating nucleons. The observed p_T and centrality dependence is consistent with the particle production predicted by models including hard scattering and subsequent energy loss of the scattered partons in the dense matter created in the collisions.Comment: 7 pages text, LaTeX, 6 figures, 2 tables, 307 authors, resubmitted to Phys. Lett. B. Revised to address referee concerns. Plain text data tables for the points plotted in figures for this and previous PHENIX publications are publicly available at http://www.phenix.bnl.gov/phenix/WWW/run/phenix/papers.htm

    Single Electrons from Heavy Flavor Decays in p+p Collisions at sqrt(s) = 200 GeV

    Get PDF
    The invariant differential cross section for inclusive electron production in p+p collisions at sqrt(s) = 200 GeV has been measured by the PHENIX experiment at the Relativistic Heavy Ion Collider over the transverse momentum range $0.4 <= p_T <= 5.0 GeV/c at midrapidity (eta <= 0.35). The contribution to the inclusive electron spectrum from semileptonic decays of hadrons carrying heavy flavor, i.e. charm quarks or, at high p_T, bottom quarks, is determined via three independent methods. The resulting electron spectrum from heavy flavor decays is compared to recent leading and next-to-leading order perturbative QCD calculations. The total cross section of charm quark-antiquark pair production is determined as sigma_(c c^bar) = 0.92 +/- 0.15 (stat.) +- 0.54 (sys.) mb.Comment: 329 authors, 6 pages text, 3 figures. Submitted to Phys. Rev. Lett. Plain text data tables for the points plotted in figures for this and previous PHENIX publications are (or will be) publicly available at http://www.phenix.bnl.gov/papers.htm
    corecore