4 research outputs found

    The Modulation of Pain by Circadian and Sleep-Dependent Processes: A Review of the Experimental Evidence

    No full text
    AbstractThis proceedings paper is the first in a series of three papers developing mathematical models for the complex relationship between pain and the sleep-wake cycle. Here, we briefly review what is known about the relationship between pain and the sleep-wake cycle in humans and laboratory rodents in an effort to identify constraints for the models. While it is well accepted that sleep behavior is regulated by a daily (circadian) timekeeping system and homeostatic sleep drive, the joint modulation of these two primary biological processes on pain sensitivity has not been considered. Under experimental conditions, pain sensitivity varies across the 24 h day, with highest sensitivity occurring during the evening in humans. Pain sensitivity is also modulated by sleep behavior, with pain sensitivity increasing in response to the build up of homeostatic sleep pressure following sleep deprivation or sleep disruption. To explore the interaction between these two biological processes using modeling, we first compare the magnitude of their effects across a variety of experimental pain studies in humans. To do this comparison, we normalize the results from experimental pain studies relative to the range of physiologicallymeaningful stimulation levels. Following this normalization, we find that the estimated impact of the daily rhythm and of sleep deprivation on experimental pain measurements is surprisingly consistent across different pain modalities. We also review evidence documenting the impact of circadian rhythms and sleep deprivation on the neural circuitry in the spinal cord underlying pain sensation. The characterization of sleep-dependent and circadian influences on pain sensitivity in this review paper is used to develop and constrain the mathematical models introduced in the two companion articles.</jats:p

    Linkages between insomnia and suicidality: Prospective associations, high-risk subgroups and possible psychological mechanisms

    No full text

    Protective Effects of Incretin Against Age-Related Diseases

    No full text

    GWAS and colocalization analyses implicate carotid intima-media thickness and carotid plaque loci in cardiovascular outcomes.

    Get PDF
    Carotid artery intima media thickness (cIMT) and carotid plaque are measures of subclinical atherosclerosis associated with ischemic stroke and coronary heart disease (CHD). Here, we undertake meta-analyses of genome-wide association studies (GWAS) in 71,128 individuals for cIMT, and 48,434 individuals for carotid plaque traits. We identify eight novel susceptibility loci for cIMT, one independent association at the previously-identified PINX1 locus, and one novel locus for carotid plaque. Colocalization analysis with nearby vascular expression quantitative loci (cis-eQTLs) derived from arterial wall and metabolic tissues obtained from patients with CHD identifies candidate genes at two potentially additional loci, ADAMTS9 and LOXL4. LD score regression reveals significant genetic correlations between cIMT and plaque traits, and both cIMT and plaque with CHD, any stroke subtype and ischemic stroke. Our study provides insights into genes and tissue-specific regulatory mechanisms linking atherosclerosis both to its functional genomic origins and its clinical consequences in humans
    corecore