2,079 research outputs found

    Modelling the flow of droplets of bio-pesticide on foliage

    Get PDF
    The flow of droplets of bio-pesticide, liquid laden with entomapathogenic nematodes (EPNs), over foliage approximated as a planar substrate is investigated theoretically via a simple analytical model and computationally by solving a subset of the Navier-Stokes equations arising from application of the long-wave approximation. That the droplets of interest can be represented as a homogeneous liquid is established via complementary experiments revealing the presence of EPNs to have negligible influence on bio-pesticide droplet spray distribution predeposition. Both approaches are used to study key issues affecting the migration of droplets over substrates relevant to pesticide deposition processes, including the effect (i) of droplet size and flow inertia on droplet morphology and coverage and (ii) of adaxial (above the leaf) or abaxial (under the leaf) flow orientations. The computational results obtained when inertia is accounted for are generally found to compare well with those given by the simple analytical model − a droplet's velocity relaxes to its terminal value very quickly, at which point gravitational, viscous, and hysteresis forces are in balance; substrate orientation is found to have only a minor influence on the extent of droplet migration

    On Lattice QCD with Many Flavors

    Get PDF
    We discuss the confining and chiral-symmetry breaking properties of QCD with a large number of flavors NfN_f. In a Monte Carlo simulation of QCD with Nf=16N_f =16 staggered fermions, we find clear evidence of a first order bulk phase transition which separates phases with broken and unbroken chiral symmetry. This is consistent with extrapolations of earlier studies with smaller NfN_f, and is also as expected from general arguments. Thus, even when the perturbative renormalization group flow has a new infrared stable fixed point near the origin, lattice artifacts induce chiral symmetry breaking, and presumably confinement, at sufficiently strong coupling.Comment: 10 pages, LaTeX, figures part of the LaTeX fil

    The Conway-Kochen argument and relativistic GRW models

    Get PDF
    In a recent paper, Conway and Kochen proposed what is now known as the "Free Will theorem" which, among other things, should prove the impossibility of combining GRW models with special relativity, i.e., of formulating relativistically invariant models of spontaneous wavefunction collapse. Since their argument basically amounts to a non-locality proof for any theory aiming at reproducing quantum correlations, and since it was clear since very a long time that any relativistic collapse model must be non-local in some way, we discuss why the theorem of Conway and Kochen does not affect the program of formulating relativistic GRW models.Comment: 16 pages, RevTe

    Small scale energy release driven by supergranular flows on the quiet Sun

    Get PDF
    In this article we present data and modelling for the quiet Sun that strongly suggest a ubiquitous small-scale atmospheric heating mechanism that is driven solely by converging supergranular flows. A possible energy source for such events is the power transfer to the plasma via the work done on the magnetic field by photospheric convective flows, which exert drag of the footpoints of magnetic structures. In this paper we present evidence of small scale energy release events driven directly by the hydrodynamic forces that act on the magnetic elements in the photosphere, as a result of supergranular scale flows. We show strong spatial and temporal correlation between quiet Sun soft X-ray emission (from <i>Yohkoh</i> and <i>SOHO</i> MDI-derived flux removal events driven by deduced photospheric flows. We also present a simple model of heating generated by flux submergence, based on particle acceleration by converging magnetic mirrors. In the near future, high resolution soft X-ray images from XRT on the <i>Hinode</i> satellite will allow definitive, quantitative verification of our results

    Newly identified properties of surface acoustic power

    Get PDF
    The cause of enhanced acoustic power surrounding active regions, the acoustic halo, is not as yet understood. We explore the properties of the enhanced acoustic power observed near disk center from 21 to 27 January 2002, including AR 9787. We find that (i) there exists a strong correlation of the enhanced high frequency power with magnetic-field inclination, with greater power in more horizontal fields, (ii) the frequency of the maximum enhancement increases along with magnetic field strength, and (iii) the oscillations contributing to the halos show modal ridges which are shifted to higher wavenumber at constant frequency in comparison to the ridges of modes in the quiet-Sun.Comment: 16 pages, 10 figures, submitted to solar physic

    The 3-3-1 model with S_4 flavor symmetry

    Full text link
    We construct a 3-3-1 model based on family symmetry S_4 responsible for the neutrino and quark masses. The tribimaximal neutrino mixing and the diagonal quark mixing have been obtained. The new lepton charge \mathcal{L} related to the ordinary lepton charge L and a SU(3) charge by L=2/\sqrt{3} T_8+\mathcal{L} and the lepton parity P_l=(-)^L known as a residual symmetry of L have been introduced which provide insights in this kind of model. The expected vacuum alignments resulting in potential minimization can origin from appropriate violation terms of S_4 and \mathcal{L}. The smallness of seesaw contributions can be explained from the existence of such terms too. If P_l is not broken by the vacuum values of the scalar fields, there is no mixing between the exotic and the ordinary quarks at the tree level.Comment: 20 pages, revised versio

    Multicritical microscopic spectral correlators of hermitian and complex matrices

    Get PDF
    We find the microscopic spectral densities and the spectral correlators associated with multicritical behavior for both hermitian and complex matrix ensembles, and show their universality. We conjecture that microscopic spectral densities of Dirac operators in certain theories without spontaneous chiral symmetry breaking may belong to these new universality classes

    Diquark condensation at strong coupling

    Full text link
    The possibility of diquark condensation at sufficiently large baryon chemical potential and zero temperature is analyzed in QCD at strong coupling. In agreement with other strong coupling analysis, it is found that a first order phase transition separates a low density phase with chiral symmetry spontaneously broken from a high density phase where chiral symmetry is restored. In none of the phases diquark condensation takes place as an equilibrium state, but, for any value of the chemical potential, there is a metastable state characterized by a non-vanishing diquark condensate. The energy difference between this metastable state and the equilibrium state decreases with the chemical potential and is minimum in the high density phase. The results indicate that there is attraction in the quark-quark sector also at strong coupling, and that the attraction is more effective at high baryon density, but for infinite coupling it is not enough to produce diquark condensation. It is argued that the absence of diquark condensation is not a peculiarity of the strong coupling limit, but persists at sufficiently large finite couplings.Comment: 10 pages, 2 figures. An important discussion concerning the extension of the results to finite couplings adde

    Low-lying Eigenvalues of the QCD Dirac Operator at Finite Temperature

    Get PDF
    We compute the low-lying spectrum of the staggered Dirac operator above and below the finite temperature phase transition in both quenched QCD and in dynamical four flavor QCD. In both cases we find, in the high temperature phase, a density with close to square root behavior, ρ(λ)(λλ0)1/2\rho(\lambda) \sim (\lambda-\lambda_0)^{1/2}. In the quenched simulations we find, in addition, a volume independent tail of small eigenvalues extending down to zero. In the dynamical simulations we also find a tail, decreasing with decreasing mass, at the small end of the spectrum. However, the tail falls off quite quickly and does not seem to extend to zero at these couplings. We find that the distribution of the smallest Dirac operator eigenvalues provides an efficient observable for an accurate determination of the location of the chiral phase transition, as first suggested by Jackson and Verbaarschot.Comment: LaTeX, 20 pages, 13 postscript figures. Reference added. To appear in Nucl. Phys.

    Renormalization Group Running of Lepton Mixing Parameters in See-Saw Models with S4S_4 Flavor Symmetry

    Full text link
    We study the renormalization group running of the tri-bimaximal mixing predicted by the two typical S4S_4 flavor models at leading order. Although the textures of the mass matrices are completely different, the evolution of neutrino mass and mixing parameters is found to display approximately the same pattern. For both normal hierarchy and inverted hierarchy spectrum, the quantum corrections to both atmospheric and reactor neutrino mixing angles are so small that they can be neglected. The evolution of the solar mixing angle θ12\theta_{12} depends on tanβ\tan\beta and neutrino mass spectrum, the deviation from its tri-bimaximal value could be large. Taking into account the renormalization group running effect, the neutrino spectrum is constrained by experimental data on θ12\theta_{12} in addition to the self-consistency conditions of the models, and the inverted hierarchy spectrum is disfavored for large tanβ\tan\beta. The evolution of light-neutrino masses is approximately described by a common scaling factor.Comment: 23 pages, 6figure
    corecore