81 research outputs found

    Limits on the production of scalar leptoquarks from Z (0) decays at LEP

    Get PDF
    A search has been made for pairs and for single production of scalar leptoquarks of the first and second generations using a data sample of 392000 Z0 decays from the DELPHI detector at LEP 1. No signal was found and limits on the leptoquark mass, production cross section and branching ratio were set. A mass limit at 95% confidence level of 45.5 GeV/c2 was obtained for leptoquark pair production. The search for the production of a single leptoquark probed the mass region above this limit and its results exclude first and second generation leptoquarks D0 with masses below 65 GeV/c2 and 73 GeV/c2 respectively, at 95% confidence level, assuming that the D0lq Yukawa coupling alpha(lambda) is equal to the electromagnetic one. An upper limit is also given on the coupling alpha(lambda) as a function of the leptoquark mass m(D0)

    Towards the petaflop for Lattice QCD simulations the PetaQCD project

    No full text
    International audienceThe study and design of a very ambitious petaflop cluster exclusively dedicated to Lattice QCD simulations started in early '08 among a consortium of 7 laboratories (IN2P3, CNRS, INRIA, CEA) and 2 SMEs. This consortium received a grant from the French ANR agency in July '08, and the PetaQCD project kickoff took place in January '09. Building upon several years of fruitful collaborative studies in this area, the aim of this project is to demonstrate that the simulation of a 256 x 1283 lattice can be achieved through the HMC/ETMC software, using a machine with efficient speed/cost/reliability/power consumption ratios. It is expected that this machine can be built out of a rather limited number of processors (e.g. between 1000 and 4000), although capable of a sustained petaflop CPU performance. The proof-of-concept should be a mock-up cluster built as much as possible with off-the-shelf components, and 2 particularly attractive axis will be mainly investigated, in addition to fast all-purpose multi-core processors: the use of the new brand of IBM-Cell processors (with on-chip accelerators) and the very recent Nvidia GP-GPUs (off-chip co-processors). This cluster will obviously be massively parallel, and heterogeneous. Communication issues between processors, implied by the Physics of the simulation and the lattice partitioning, will certainly be a major key to the project

    A study of radiative muon-pair events at Z0 energies and limits on an additional Z′ gauge beson

    No full text
    An analysis is reported on the channel e+e-→μ+μ- (nγ), n=1,2..., using data taken with the DELPHI detector at LEP from 1990 to 1992. Differential cross sections of the radiative photons as a function of photon energy and of the angle between the photon and the muon are presented. No significant deviations from expectations are observed. The data are also used to extract the muon-pair cross section and asymmetry below the Z0 peak by using those events with relatively hard initial state radiative photon(s). The measured cross section and asymmetry show no significant deviation from the Standard Model expectations. These results together with the DELPHI cross section and asymmetry measurements at the LEP energies from the 1990 to 1992 running periods are used to determine limits on the Z0-Z′ gauge boson mixing angle θZ′ and on the Z′ mass. There is no indication of the existence of a Z′; the limits obtained on the mixing angle substantially improve upon existing limits. The 95% confidence level allowed ranges of θZ′ in various models are: {Mathematical expression} © 1995 Springer-Verlag
    corecore