12 research outputs found

    Nanocoating on cotton fabric with nitrogen-doped graphene quantum dots/titanium dioxide/PVA: An erythemal UV protection and photoluminescent finishing

    No full text
    Prolonged exposure to ultraviolet (UV) radiation from the sun can result in several skin problems, such as accelerating aging, burns, blemishes, or even cancer. Even when wearing clothes, there is still a risk that the user will be exposed to UV radiation and suffer skin damage. Therefore, it is necessary to apply anti-UV treatments to the clothes and fabrics used, so that users become safe. Nitrogen doped graphene quantum dots (N-GQD) and titanium dioxide (TiO2) NPs are materials that have a broad spectrum of UV absorption and are promising candidates to be applied in functional finishing in use on textile materials, giving textiles property anti-UV. The aim of this research is to evaluate the synergy effect between N-GQD and TiO2 NPs in getting a nanocoating that can be applied on a cotton fabric, add photoluminescent and anti-UV properties. The nanocoatings obtained were applied via industrial discontinuous method, the high-pressure and high-temperature exhaustion process to the cotton fabric using polyvinyl alcohol as a binding agent. According to the UV protection assessment, it was observed that both materials are excellent UV absorbers and their ultraviolet protection factor (UPF) are highly dependent on the concentrations used in the nanocoated cotton fabrics. Thus, nanocoated cotton with TiO2, N-GQD and TiO2/N-GQD revealed an UPF of +50, which established their effectiveness in protecting against UV radiation. They also withstand up to 20 wash cycles with no change in UPF

    Cubic Superparamagnetic Nanoparticles Of Nife2o4 Via Fast Microwave Heating

    No full text
    This study demonstrated the possibility of using microwave heating as a fast and cheap method for synthesizing superparamagnetic nanoparticles. In this sense, NiFe2O4 samples were subjected to microwave heating at various temperatures to determine the lowest temperature at which the crystalline phase of the nanoparticles occurs. X-Ray powder diffraction, 57Fe Mössbauer spectroscopy, and transmission electron microscopy of the samples were performed to confirm the formed nanoparticles. It was observed a cubic structure of inverse spinel type with good crystallinity. The magnetic properties of the samples were studied using a vibrating sample magnetometer and was found to zero values to remanent magnetization and coercivity field. This behavior suggests superparamagnetic features for all samples. The crystallite size (9, 10, and 12 nm) and saturation magnetization (31–45 emu/g) were used as a function of the increase of the temperature treatment time. Blocking temperature was found by tracing remanent magnetization versus temperature.1612Amer, M.A., Meaz, T.M., Mössbauer, infrared and X-ray studies of Ni0.5Zn0.5CrxFe2-xO4 ferrites (2005) Egyp J Solids, 28, p. 3Barreto, A., Santiago, V., Magnetic nanoparticles for a new drug delivery system to control quercetin releasing for cancer chemotherapy (2011) J Nanopart Res, 13 (12), pp. 6545-6553Bennett, C.O., Myers, J.E., (1982) Momentum, heat, and mass transfer, , McGraw-Hill, New York:Bleicher, L., Sasaki, J.M., Development of a graphical interface for the Rietveld refinement program DBWS (2000) J Appl Crystallogr, 33 (4), p. 1189Braga, T.P., Vasconcelos, I.F., Magnetic composites based on hybrid spheres of aluminum oxide and superparamagnetic nanoparticles of iron oxides (2010) J Magn Magn Mater, 322 (6), pp. 633-637Cullity, B.D., Graham, C.D., (2011) Introduction to magnetic materials, , Wiley, New York:Dickson, D.P.E., Berry, F.J., (1986) Mössbauer spectroscopy, , Cambridge University Press, Cambridge:Freire, R., Ribeiro, T., MZnFe2O4 (M=Ni, Mn) cubic superparamagnetic nanoparticles obtained by hydrothermal synthesis (2013) J Nanopart Res, 15 (5), pp. 1-12Friedlander, S.K., (2000) Smoke, dust, and haze, , Oxford University Press, New York:Gibb, T.C., (1994) Encyclopedia of Inorganic Chemistry, , Wiley, Chidrester:Karakas, Z.K., Boncukcuoglu, R., The Investigation of the Removal of the Arsenic from Wastewaters by Using NiFe2O4 Nanoparticles Produced with Microwave Assisted Combustion Method (2013) J Selcuk Univ Nat Appl Sci, 2013, pp. 332-338Klabunde, K.J., Richards, R., (2001) Nanoscale materials in chemistry, , Wiley, New York:Koziej, D., Floryan, C., Microwave dielectric heating of non-aqueous droplets in a microfluidic device for nanoparticle synthesis (2013) Nanoscale, 5 (12), pp. 5468-5475Latham, A.H., Williams, M.E., Controlling Transport and Chemical Functionality of Magnetic Nanoparticles (2008) Acc Chem Res, 41 (3), pp. 411-420Markov, I.V., (1995) Crystal growth for beginners: fundamentals of nucleation, crystal growth, and epitaxy, , World Scientific, Singapore:Patterson, A., The Scherrer formula for X-ray particle size determination (1939) Phys Rev, 56 (10), p. 978Petcharoen, K., Sirivat, A., Synthesis and characterization of magnetite nanoparticles via the chemical co-precipitation method (2012) Mater Sci Eng, B, 177 (5), pp. 421-427Rietveld, H.M., Line profiles of neutron powder-diffraction peaks for structure refinement (1967) Acta Crystallography, 22, pp. 151-152Thomas, J.J., Shinde, A.B., Krishna, P.S.R., Kalarikkal, N., Cation distribution and micro level magnetic alignments in the nanosized nickel zinc ferrite (2013) J Alloy Compd, 546, pp. 77-83Tong, J., Cai, X., Efficient magnetic CoFe2O4 nanocrystal catalyst for aerobic oxidation of cyclohexane prepared by sol–gel auto-combustion method: effects of catalyst preparation parameters (2013) J Sol-Gel Sci Technol, 66 (3), pp. 452-459Wang, L., Li, F.S., Mossbauer study of nanocrystalline Ni-Zn ferrite (2001) J Magn Magn Mater, 223 (3), pp. 233-237Weidler, P., Luster, J., The Rietveld method applied to the quantitative mineralogical and chemical analysis of a ferralitic soil (1998) Eur J Soil Sci, 49 (1), pp. 95-105Williamson, G., Hall, W., X-ray line broadening from filed aluminium and wolfram (1953) Acta Metall, 1 (1), pp. 22-31Yamaura, M., Camilo, R., Preparation and characterization of (3-aminopropyl) triethoxysilane-coated magnetite nanoparticles (2004) J Magn Magn Mater, 279 (2), pp. 210-217Zhang, Z.-G., Yao, G.-C., Synthesis of NiFe2O4 spinel nanopowder via low-temperature solid-state reactions (2010) J Northeastern Univ (Nat Sci), 31 (6), pp. 868-872Zhang, W., Jia, S., Studies of the magnetic field intensity on the synthesis of chitosan-coated magnetite nanocomposites by co-precipitation method (2012) Mater Sci Eng, C, 32 (2), pp. 381-384Zhang, W., Jia, S.-Y., Effects of alkaline precipitating agents on synthesis of magnetite nanomaterials by hydrothermal d-glucose method (2013) J Nanopart Res, 15 (6), pp. 1-

    Microstructure And Magneto-dielectric Properties Of Ferrimagnetic Composite Gdigx:yig1-x At Radio And Microwave Frequencies

    No full text
    The gadolinium iron garnet (GdIG, Gd3Fe5O12) and yttrium iron garnet (YIG, Y3Fe5O12), and their GdIGX:YIG1-X composites, were obtained by a new solid-state procedure. The microstructure of the samples was studied by X-ray powder diffraction and Rietveld refinement, Vickers microhardness and scanning electron microscopy. The density and microhardness behavior were studied as a function of the lattice parameters for the composite samples. In the present work, the magnetic and dielectric properties of the GdIGX:YIG1-X composite at radio and microwave frequencies were also studied. The magnetic permeability and dielectric permittivity and loss properties for the composite GdIGX:YIG1-X showed good potential for use in components, when one is looking for moderate εr′ and μr′ materials with low loss in the radio-frequency and microwave range. © 2009 Elsevier Ltd. All rights reserved.705804810Mou, D., Complex oxide films for memory and detector applications, Thesis (Doctor of Philosophy (1998), Royal Institute of Technology, Stockholm, Sweden, 60 fSohlström, H., Fibre optic magnetic field sensors utilizing iron garnet materials, Thesis (Doctor of Philosophy (1993), Royal Institute of Technology, Stockholm, Sweden, 59 fKidoh, H., Morimoto, A., Shimizu, T., (1991) Applied Physics Letters, 59, p. 237Valenzuela, R., (1994) Magnetic Ceramics, , Cambridge University Press, New YorkZhang, H., Han, H., Su, C., Zhang, H., Hou, Z., Song, Q., (2007) Materials Science and Engineering: A, 445, p. 180Yagi, H., Bisson, J.F., Ueda, K., Yanagitani, T., (2006) Journal of Luminescence, 121, p. 88Novoselov, A., Kagamitani, Y., Kasamoto, T., Guyot, Y., Ohta, H., Shibata, H., Yoshikawa, A., Fukuda, T., (2007) Materials Research Bulletin, 42, p. 27Tsidaeva, N., Abaeva, V., (2006) Journal of Alloys and Compounds, 418, p. 145Johansson, P., Khartsev, S.I., Grishin, A.M., (2006) Thin Solid Films, 515, p. 477Kahl, S., Grishin, A.M., (2004) Journal of Magnetism and Magnetic Materials, 278, p. 244Mao, T.-C., Chen, J.-C., (2006) Journal of Magnetism and Magnetic Materials, 302, p. 74Shinagawa, K., Tobita, E., Saito, T., Tsushima, T., (1998) Journal of Magnetism and Magnetic Materials, 251, p. 177Tsay, C.-Y., Liu, C.-Y., Liu, K.-S., Lin, I.-N., Hu, L.-J., Yeh, T.-S., (2002) Journal of Magnetism and Magnetic Materials, 239, p. 490Zanatta, S.C., Cótica, L.F., Paesano Jr., A., de Medeiros, S.N., da Cunha, J.B.M., Hallouche, B., (2005) Journal of the American Ceramic Society, 88, p. 3316Hudson, A.S., (1970) Journal of Physics D: Applied Physics, 3, p. 251Rietveld, H.M., (1969) Journal of Applied Crystallography, 10, p. 65Larson, A.C., Von Dreele, R.B., General structure analysis system (GSAS) (2004) Los Alamos National Laboratory Report LAUR, 86-748Tompson, P., Cox, D.E., Hastings, J.B., (1987) Journal of Applied Crystallography, 20, p. 79Ristic, M., Nowik, I., Popovic, S., Felner, I., Music, S., (2003) Materials Letters, 57, p. 2584Vaqueiro, P., Crosnier-Lopez, M.P., López-Quintela, M.A., (1996) Journal of Solid State Chemistry, 126, p. 161Kum, J.S., Kim, S.J., Shim, I.-B., Chul Sung Kim, C.S., (2004) Journal of Magnetism and Magnetic Materials, 272, p. 2227German, R.M., Powder Metallurgy Science (1989) Metal Power Industries Federation, p. 38Yoon, D.-H., Zhang, J., Lee, B.I., (2003) Materials Research Bulletin, 38, p. 765Chiang, Y.M., Birnie, D., Kingery, W.D., (1997) Physical Ceramics. first ed., , Wiley, New York pp. 468Fechine, P.B.A., Almeida, A.F.L., Freire, F.N.A., Santos, M.R.P., Pereira, F.M.M., Jimenez, R., Mendiola, J., Sombra, A.S.B., (2006) Materials Chemistry and Physics, 96, p. 402Almeida, A.F.L., Fechine, P.B.A., Kretly, L.C., Sombra, A.S.B., (2006) Journal of Materials Science, 41, p. 4623Kingery, W.D., Bowen, H.K., Uhlmann, D.R., (1976) Introduction to Ceramics. second ed., , Wiley, Massachusetts pp. 1006Sirdeshmukh, D.B., Sirdeshmukh, L., Subhadra, K.G., Kishan Rao, K., Bal Laxman, S., (2001) Bulletin of Materials Science, 24 (5), p. 469Moulson, A.J., Herbert, J.M., (2003) Electroceramics: Materials, Properties and Applications. second ed., , Wiley, San Francisco pp. 501Krupka, J., Geyer, R.G., (1996) IEE Transactions on Magnetics, 32, p. 1924Mosallaei, H., Sarabandi, K., (2004) IEEE Transactions on Antennas and Propagation, 52 (6), p. 1558Fechine, P.B.A., Moretzsohn, R.S.T., Costa, R.C.S., Derov, J., Stewart, J.W., Drehman, A.J., Junqueira, C., Sombra, A.S.B., (2008) Microwave and Optical Technology Letters, 50 (11), p. 285

    Microstructural And Electrical Properties Of Pbtio 3 Screen-printed Thick Films

    No full text
    In this article we will study the structural and electrical properties of PbTiO 3 (PTO) screen-printed thick films. These properties can change with synthetic routes employed for synthesis of PTO. The ceramic powder has been synthesized by mechanical alloying and solid state route. This material crystallizes in the tetragonal system, with space group P4mm and unit cell dimensions a = b = 3.904, c = 4.152 Å, and Z = 1. From our results, it was observed that PTO obtained by mechanical alloying provides smaller crystallite size. The Rietveld refinement showed that the samples synthesized by mechanical alloying and solid state route crystallize in the tetragonal system but with different cell parameters. The Raman shifts of these films agree with modes from literature. However, some displacements happen, because the morphology and structural characteristics of the thick films are different, compared to single crystal and thin film. The photomicrographs of the PTO thick films showed that the choice of synthetic routes obtained samples with different microstructures. © Springer Science+Business Media, LLC 2007.1910973980Jha, P., Ganguli, A.K., (2003) Proc. Indian Acad. Sci. (Chem. Sci.), 115, p. 431Kolar, D., Suvorov, D., (1995) Eur. J. Solid State Inorg. Chem., 32, p. 751Akbas, M.A., Davies, P.K., (1998) J. Am. Ceram. Soc., 81, p. 670Akbas, M.A., Davies, P.K., (1997) J. Am. Ceram. Soc., 80, p. 1727Cava, R.J., (2001) J. Mater. Chem., 11, p. 54Cava, R.J., Krajewski, J.J., Roth, R.S., (1999) Mater. Res. Bull., 34, p. 355Thirumal, M., Jawahar, I.N., Surendran, K.P., Mohanan, P., Ganguli, A.K., (2002) Mater. Res. Bull., 37, p. 185Lee, H.J., Hong, K.S., Kim, S.J., Kim, I.T., (1997) Mater. Res. Bull., 32, p. 847Wu, Y.J., Chen, X.M., (2001) J. Mater. Res., 16, p. 1734Subramanian, M.A., Li, D., Duan, N., Reisner, B.A., Sleight, A.W., (2000) J. Solid State Chem., 151, p. 323Homes, C.C., Vogt, T., Shapiro, S.M., Wakimoto, S., Ramirez, A.P., (2001) Science, 293, p. 673Jha, P., Arora, P., Ganguli, A.K., (2003) Mater. Lett., 57, p. 2443Kretly, L.C., Almeida, A.F.L., Fechine, P.B.A., de Oliveira, R.S., Sombra, A.S.B., (2004) J. Mater. Sci.: Mater. Electron., 15, p. 657Almeida, A.F.L., Fechine, P.B.A., Góes, J.C., Valente, M.A., Miranda, M.A.R., Sombra, A.S.B., (2004) Mater. Sci. Eng. B, 111, pp. 113-123Valim, D., Souza Filho, A.G., Freire, P.T.C., Fagan, S.B., Ayala, A.P., Mendes Filho, J., Almeida, A.F.L., Sombra, A.S.B., (2004) Phys. Rev. B, 70, p. 132103Moulson, A.J., Herbert, J.M., (1997) Electroceramics (Materials-Properties-Applications), , (Chapman & Hall, London)Goodman, G., Buchanan, R.C., Reynolds, T.G., (1991) Ceramic Materials for Electronics, , in ed. by R.C. Buchanan (Marcel Dekker Inc., New york)dos Santos, L.P.S., Caracterização óptica e estrutural de PbTiO 3 nanoestruturado obtido por moagem de alta energia (2002), Dissertação de Mestrado, Universidade de São PauloMazon, T., Obtenção de PZN com fase e microestrutura controladas (1997), 142 f., Universidade Estadual PaulistaUdompom, A., Ananta, S., (2004) Curr. Appl. Phys., 4, p. 186Megaw, H.D., (1945) Proc. Phys. Soc., 58, p. 133Udomporn, A., Anata, S., (2004) Mater. Lett., 58, p. 1154Forrester, J.S., Zobec, J.S., Phelan, D., Kisi, E.H., (2004) J. Solid State Chem., 117, p. 3553Szwagierczak, D., Kulawik, J., (2004) J. Eur. Ceram. Soc., 24, p. 1979Rietveld, H.M., (1969) J. Appl. Crystallogr., 10, p. 65Larson, A.C., Von Dreele, R.B., (2004) General Structure Analysis System (GSAS), pp. 86-748. , Los Alamos National Laboratory Report LAURTompson, P., Cox, D.E., Hastings, J.B., (1987) J. Appl. Crystallogr., 20, p. 79Young, R.A., Desai, P., (1989) Arch. Nauki Mater., 71Paiva-Santos, C.O., Cavalheiro, A.A., Zaghete, M.A., Cilense, M., Varela, J.A., Silva Giotto, M.T., Mascarenhas, Y.P., (2001) Adv. X Ray Anal., 44, p. 38Scherrer, P., (1918) Nachr. Ges. Wiss. Gottingen, Math.-Phys. Kl., 2, p. 96Azároff, L.V., (1968) Elements of X-ray Crystallography, , (McGraw-Hill, New York)Stokes, A.R., Wilson, A.J.C., (1944) Proc. Phys. Soc. London, 56, p. 174Foster, C.M., Li, Z., Grimsditch, M., Chan, S.K., (1993) D.J. Lam, Phys. Rev. B, 48, p. 10160Taguchi, I., Pignolet, A., Wang, L., Proctor, M., Levynand, F., Schimd, P.E., (1993) J. Appl. Phys., 73, p. 394Mendiola, J., Calzada, M.L., Ramos, P., Martin, M.J., Agulló-Rueda, F., (1998) Thin Solid Films, 315, p. 19

    Synthesis, Structure And Vibrational Properties Of Gdigx:yig1-x Ferrimagnetic Ceramic Composite

    No full text
    Y3Fe5O12 (YIG) crystal has many attractive characteristics, such as low dielectric loss, narrow resonance linewidth in microwave region and also possesses a good saturated magnetization value. Composite technology in general sets out to combine materials in such a way that the properties of the composite are the optimum for a particular application. The different materials work together to give a composite of unique properties. In this work, we present the preparation procedure (obtaining) of the GdIGX:YIG1-X ferrimagnetic ceramic matrix composite by mechanical alloying and calcinations. Besides that, we study its properties by X-ray powder diffraction, infrared, Micro-Raman, 57Fe Mössbauer spectroscopy and hysteresis loop measurements. © 2008 Elsevier Ltd.701202209Ustinov, A.B., Tiberkevich, V.S., Srinivasan, G., Slavin, A.N., Semenov, A.A., Karmanenko, S.F., Kalinikos, B.A., Ramer, R., (2006) J. Appl. Phys., 100, pp. 093905-093907Ganne, J.P., Lebourgeois, R., Paté, M., Dubreuil, D., Pinier, L., Pascard, H., (2007) J. Eur. Ceram. Soc., 27, p. 2771Adam, J.D., Davis, L.E., Dionne, G.F., Schloemann, E.F., Stitzer, S.N., (2002) IEEE Trans. Microwave Theory Tech., 50, p. 721Chen, Y.F., Wu, K.T., Yao, Y.D., Peng, C.H., You, K.L., Tse, W.S., (2005) Microelectron. Eng., 81, p. 329Huang, M., Zhang, S., (2002) Mater. Chem. Phys., 73, p. 314Valenzuela, R., (1994) Magnetic Ceramics, , Cambridge University Press, New YorkAhn, Y.S., Han, M.H., Kim, C.O., (1996) J. Mater. Sci., 31, p. 4233Kimura, T., Takizawa, H., Uheda, K., Endo, T., Shimada, M., (1998) J. Am. Ceram. Soc., 81, p. 2961Sánchez, R.D., Ramos, C.A., Rivas, J., Vaqueiro, P., López-Quintela, M.A., (2004) Phys. B, 354, p. 104Buscaglia, V., Caracciolo, F., Bottino, C., Leoni, M., Nanni, P., (1997) Acta Mater., 45 (3), p. 1213Kong, L.B., Ma, J., Huang, H., (2002) Mater. Lett., 56, p. 344Guo, X.Z., Ravi, B.G., Devi, P.S., Hanson, J.C., Morgolies, J., Gambino, R.J., Parise, J.B., Sampath, S., (2005) J. Magn. Magn. Mater., 295, p. 145Mao, T.-C., Chen, J.-C., (2006) J. Magn. Magn. Mater., 302, p. 74Shinagawa, K., Tobita, E., Saito, T., Tsushima, T., (1998) J. Magn. Magn. Mater., 251, p. 177Tsay, C.-Y., Liu, C.-Y., Liu, K.-S., Lin, I.-N., Hu, L.-J., Yeh, T.-S., (2002) J. Magn. Magn. Mater., 239, p. 490Zanatta, S.C., Cótica, L.F., Paesano Jr., A., de Medeiros, S.N., da Cunha, J.B.M., Hallouche, B., (2005) J. Am. Ceram. Soc., 88, p. 3316Hudson, A.S., (1970) J. Phys. D: Appl. Phys., 3, p. 251Rietveld, H.M., (1969) J. Appl. Crystallogr., 10, p. 65A.C. Larson, R.B. Von Dreele, General Structure Analysis System (GSAS), Los Alamos National Laboratory Report LAUR, 86-748, 2004Tompson, P., Cox, D.E., Hastings, J.B., (1987) J. Appl. Crystallogr., 20, p. 79Young, R.A., Desai, P., (1989) Arch. Nauki. Mater., 10, p. 71Paiva-Santos, C.O., Gouveia, H., Lãsa, W.C., Varela, J.A., (1999) Mater. Struct., 6 (2), p. 111Paiva-Santos, C.O., Cavalheiro, A.A., Zaghete, M.A., Cilense, M., Varela, J.A., Silva Giotto, M.T., Mascarenhas, Y.P., (2001) Adv. X-ray Anal., 44, p. 38(1999) The Measurement, Instrumentation, and Sensors Handbook, , Webster J.G. (Ed), CRC Press, Boca Raton, FLQuantum Design, San Diego, CA, Magnetic Property Measurement System Software User's Manual, 1996Scherrer, P., (1918) Nachr. Ges. Wiss. Gottingen, Math.-Phys. Kl., 2, p. 96Azároff, L.V., (1968) Elements of X-ray Crystallography, , McGraw-Hill, New YorkStokes, A.R., Wilson, A.J.C., (1944) Proc. Phys. Soc. Lond., 56, p. 174Ristic, M., Nowik, I., Popovic, S., Felner, I., Music, S., (2003) Mater. Lett., 57, p. 2584Vaqueiro, P., Crosnier-Lopez, M.P., López-Quintela, M.A., (1996) J. Solid State Chem., 126, p. 161Kum, J.S., Kim, S.J., Shim, I.-B., Chul Sung Kim, C.S., (2004) J. Magn. Magn. Mater., 272, p. 2227Shannon, R.D., Prewitt, C.T., (1969) Acta Crystallogr. B, 25, p. 925Rousseau, D.L., Bauman, R.P., Porto, S.P.S., (1981) J. Raman Spectrosc., 253, p. 10McDevitt, N.T.J., (1967) Opt. Soc. Am., 834, p. 57Hofmeister, A.M., Campbell, K.R., (1992) J. Appl. Phys., 72, p. 638Mathur, S., Veith, M., Rapalaviciute, R., Shen, H., Goya, G.F., Martins, W.L., Berquo, T.S., (2004) Chem. Mater., 1906, p. 16Vandormael, D., Grandjean, F., Hautot, D., Long, G.J., (2001) J. Phys.: Condens. Matter, 13, p. 1759Gibb, T.C., (1994) Mössbauer Spectroscopy. V. 5. Encyclopedia of Inorganic Chemistry, , Wiley, ChichesterPozar, D.M., (1998) Microwave Engineering. second ed., , Wiley, Inc., New Yor
    corecore