396 research outputs found

    Simulation of Absolute Amplitudes of Ultrasound Signals Using Equivalent Circuits

    Full text link

    An Empirical Relation Between The Large-Scale Magnetic Field And The Dynamical Mass In Galaxies

    Full text link
    The origin and evolution of cosmic magnetic fields as well as the influence of the magnetic fields on the evolution of galaxies are unknown. Though not without challenges, the dynamo theory can explain the large-scale coherent magnetic fields which govern galaxies, but observational evidence for the theory is so far very scarce. Putting together the available data of non-interacting, non-cluster galaxies with known large-scale magnetic fields, we find a tight correlation between the integrated polarized flux density, S(PI), and the rotation speed, v(rot), of galaxies. This leads to an almost linear correlation between the large-scale magnetic field B and v(rot), assuming that the number of cosmic ray electrons is proportional to the star formation rate, and a super-linear correlation assuming equipartition between magnetic fields and cosmic rays. This correlation cannot be attributed to an active linear alpha-Omega dynamo, as no correlation holds with global shear or angular speed. It indicates instead a coupling between the large-scale magnetic field and the dynamical mass of the galaxies, B ~ M^(0.25-0.4). Hence, faster rotating and/or more massive galaxies have stronger large-scale magnetic fields. The observed B-v(rot) correlation shows that the anisotropic turbulent magnetic field dominates B in fast rotating galaxies as the turbulent magnetic field, coupled with gas, is enhanced and ordered due to the strong gas compression and/or local shear in these systems. This study supports an stationary condition for the large-scale magnetic field as long as the dynamical mass of galaxies is constant.Comment: 23 pages, 4 figures, accepted for publication in the Astrophysical Journal Letter

    Diesel soot aging in urban plumes within hours under cold dark and humid conditions

    Get PDF
    Fresh and aged diesel soot particles have different impacts on climate and human health. While fresh diesel soot particles are highly aspherical and non-hygroscopic, aged particles are spherical and hygroscopic. Aging and its effect on water uptake also controls the dispersion of diesel soot in the atmosphere. Understanding the timescales on which diesel soot ages in the atmosphere is thus important, yet knowledge thereof is lacking. We show that under cold, dark and humid conditions the atmospheric transformation from fresh to aged soot occurs on a timescale of less than five hours. Under dry conditions in the laboratory, diesel soot transformation is much less efficient. While photochemistry drives soot aging, our data show it is not always a limiting factor. Field observations together with aerosol process model simulations show that the rapid ambient diesel soot aging in urban plumes is caused by coupled ammonium nitrate formation and water uptake.Peer reviewe

    Two-Dimensional Electronic Spectroscopy of Chlorophyll a: Solvent Dependent Spectral Evolution

    Get PDF
    The interaction of the monomeric chlorophyll Q-band electronic transition with solvents of differing physical-chemical properties is investigated through two-dimensional electronic spectroscopy (2DES). Chlorophyll constitutes the key chromophore molecule in light harvesting complexes. It is well-known that the surrounding protein in the light harvesting complex fine-tunes chlorophyll electronic transitions to optimize energy transfer. Therefore, an understanding of the influence of the environment on the monomeric chlorophyll electronic transitions is important. The Q-band 2DES is inhomogeneous at early times, particularly in hydrogen bonding polar solvents, but also in nonpolar solvents like cyclohexane. Interestingly this inhomogeneity persists for long times, even up to the nanosecond time scale in some solvents. The reshaping of the 2DES occurs over multiple time scales and was assigned mainly to spectral diffusion. At early times the reshaping is Gaussian-like, hinting at a strong solvent reorganization effect. The temporal evolution of the 2DES response was analyzed in terms of a Brownian oscillator model. The spectral densities underpinning the Brownian oscillator fitting were recovered for the different solvents. The absorption spectra and Stokes shift were also properly described by this model. The extent and nature of inhomogeneous broadening was a strong function of solvent, being larger in H-bonding and viscous media and smaller in nonpolar solvents. The fastest spectral reshaping components were assigned to solvent dynamics, modified by interactions with the solute

    Sources of increase in lowermost stratospheric sulphurous and carbonaceous aerosol background concentrations during 1999–2008 derived from CARIBIC flights

    Get PDF
    This study focuses on sulphurous and carbonaceous aerosol, the major constituents of particulate matter in the lowermost stratosphere (LMS), based on in situ measurements from 1999 to 2008. Aerosol particles in the size range of 0.08–2 µm were collected monthly during intercontinental flights with the CARIBIC passenger aircraft, presenting the first long-term study on carbonaceous aerosol in the LMS. Elemental concentrations were derived via subsequent laboratory-based ion beam analysis. The stoichiometry indicates that the sulphurous fraction is sulphate, while an O/C ratio of 0.2 indicates that the carbonaceous aerosol is organic. The concentration of the carbonaceous component corresponded on average to approximately 25% of that of the sulphurous, and could not be explained by forest fires or biomass burning, since the average mass ratio of Fe to K was 16 times higher than typical ratios in effluents from biomass burning. The data reveal increasing concentrations of particulate sulphur and carbon with a doubling of particulate sulphur from 1999 to 2008 in the northern hemisphere LMS. Periods of elevated concentrations of particulate sulphur in the LMS are linked to downward transport of aerosol from higher altitudes, using ozone as a tracer for stratospheric air. Tropical volcanic eruptions penetrating the tropical tropopause are identified as the likely cause of the particulate sulphur and carbon increase in the LMS, where entrainment of lower tropospheric air into volcanic jets and plumes could be the cause of the carbon increase

    Investigation of the role of SDHB inactivation in sporadic phaeochromocytoma and neuroblastoma

    Get PDF
    Germline mutations in the succinate dehydrogenase (SDH) (mitochondrial respiratory chain complex II) subunit B gene, SDHB, cause susceptibility to head and neck paraganglioma and phaeochromocytoma. Previously, we did not identify somatic SDHB mutations in sporadic phaeochromocytoma, but SDHB maps to 1p36, a region of frequent loss of heterozygosity (LOH) in neuroblastoma as well. Hence, to evaluate SDHB as a candidate neuroblastoma tumour suppressor gene (TSG) we performed mutation analysis in 46 primary neuroblastomas by direct sequencing, but did not identify germline or somatic SDHB mutations. As TSGs such as RASSF1A are frequently inactivated by promoter region hypermethylation, we designed a methylation-sensitive PCR-based assay to detect SDHB promoter region methylation. In 21% of primary neuroblastomas and 32% of phaeochromocytomas (32%) methylated (and unmethylated) alleles were detected. Although promoter region methylation was also detected in two neuroblastoma cell lines, this was not associated with silencing of SDHB expression, and treatment with a demethylating agent (5-azacytidine) did not increase SDH activity. These findings suggest that although germline SDHB mutations are an important cause of phaeochromocytoma susceptibility, somatic inactivation of SDHB does not have a major role in sporadic neural crest tumours and SDHB is not the target of 1p36 allele loss in neuroblastoma and phaeochromocytoma

    Genetic and In Vitro Inhibition of PCSK9 and Calcific Aortic Valve Stenosis

    Get PDF
    The authors investigated whether PCSK9 inhibition could represent a therapeutic strategy in calcific aortic valve stenosis (CAVS). A meta-analysis of 10 studies was performed to determine the impact of the PCSK9 R46L variant on CAVS, and the authors found that CAVS was less prevalent in carriers of this variant (odds ratio: 0.80 [95% confidence interval: 0.70 to 0.91]; p = 0.0011) compared with noncarriers. PCSK9 expression was higher in the aortic valves of patients CAVS compared with control patients. In human valve interstitials cells submitted to a pro-osteogenic medium, PCSK9 levels increased and a PCSK9 neutralizing antibody significantly reduced calcium accumulation
    • …
    corecore