1,162 research outputs found

    Journal Staff

    Get PDF
    Multi-decadal studies of community and ecosystemdynamics are rare; however, this time frame is most relevant for assessing the impact of anthropogenic influences and climate change on ecosystems. For this reason, we investigated changes in vegetation and microtopography over 52 years in two contrasting mire ecosystems, one ombrotrophic (bog) and one minerotrophic (fen), representing different successional stages and contrasting hydrological settings. In both peatlands, floristic composition was recorded in the same permanent plots (n = 55-56, 0.25 m(2)) in both 1960 and 2012 and microtopography was mapped over a large area (ca. 2500 m(2)) that encompassed these same plots. We quantified and compared the community-level changes and internal spatial dynamics, tested associations between pH/microtopography and community/species change, and examined how the area and location of hummock microforms had changed over time. The bog exhibited little site level change in vegetation, where few species changed significantly in cover and plot frequency. However, detailed analyses revealed some large within-plot changes over time in the bog, illustrating that bogs can be highly dynamic systems at a fine scale. In contrast, the rich fen experienced a clear directional change; specifically, bryophyte abundance decreased by 70% and brown mosses were almost extinct. Although pH had decreased over time at the rich fen, this decrease at the plot-level was not associated with the decline of brown moss abundance. The microtopographic structure did not change substantially at the bog where similar to 70% was covered by lawn/hummocks; however, in the rich fen hummocks expanded (from 10% to 16% cover) and moved or expanded down slope. Our study suggests, that at the site-level, the bog ecosystem was more resistant to environmental changes over time compared to the rich fen, as evidenced by shifts in vegetation and microtopography. The contrasting scales of vegetation dynamics observed within a bog (i.e., within-plot changes vs. site-level) indicate that plant-environment feedbacks contribute to the peatland level stability. While in rich fens, internal feedbacks may be weaker and the ecosystem's vegetation and microtopographic structure are vulnerable to shifting hydrological fluxes

    Cellular Signaling Mechanisms of Hypocretin/Orexin

    Get PDF
    Publisher Copyright: © 2021 The Author(s).Orexin receptors (OXRs) are promiscuous G-protein-coupled receptors that signal via several G-proteins and, putatively, via other proteins. On which basis the signal pathways are selected and orchestrated is largely unknown. We also have an insufficient understanding of the kind of signaling that is important for specific types of cellular responses. OXRs are able to form complexes with several other G-protein-coupled receptors in vitro, and one possibility is that the complexing partners regulate the use of certain signal transducers. In the central nervous system neurons, the main acute downstream responses of OXR activation are the inhibition of K+ channels and the activation of the Na+/Ca2+ exchanger and non-selective cation channels of unknown identity. The exact nature of the intracellular signal chain between the OXRs and these downstream targets is yet to be elucidated, but the Gq-phospholipase C (PLC) protein kinase C pathway - which is a significant signaling pathway for OXRs in recombinant cells - may be one of the players in neurons. The Gq-PLC pathway may also, under certain circumstances, take the route to diacylglycerol lipase, which leads to the production of the potent endocannabinoid (eCB), 2-arachidonoyl glycerol, and thereby connects orexins with eCB signaling. In addition, OXRs have been studied in the context of neurodegeneration and cancer cell death. Overall, OXR signaling is complex, and it can change depending on the cell type and environment.Peer reviewe

    Analysis of all-optically tunable functionalities in sub-wavelength periodic structures by the Fourier modal method

    Get PDF
    We propose the nonlinear Fourier Modal Method (FMM) [J. Opt. Soc. Am. B 31, 2371 (2014)] as a convenient and versatile numerical tool for the design and analysis of grating based next generation all-optical devices. Here, we include several numerical examples where the FMM is used to simulate all-optically tunable functionalities in sub-wavelength periodic structures. At first, we numerically investigate a 1-D periodic nonlinear binary grating with amorphous TiO2. We plot the diffraction efficiency in the transmitted orders against the structure depth for normally incident plane wave. Change in diffraction efficiencies for different incident field amplitudes are evident from the plots. We verify the accuracy of our implementation by comparing our results with the results obtained with the nonlinear Split Field-Finite Difference Time Domain (SF-FDTD) method. Next we repeat the same experiment with vertically standing amorphous Titanium dioxide (TiO2) nanowire arrays grown on top of quartz which are periodic in two mutually perpendicular directions and examine the efficiencies in the direct transmitted light for different incident field amplitudes. Our third example includes analysis of a form birefringent linear grating with Kerr medium. With FMM we demonstrate that the birefringence of such a structure can be tuned by all-optical means. As a final example, we design a narrow band Guided Mode Resonance Filter (GMRF). Numerical experiments based on the nonlinear FMM reveal that the spectral tunability of such a filter can be obtained by all-optical means.This work is partially supported by the Academy of Finland (contract 285880)

    Activity of perch, Perca fluviatilis L. in relation to water temperature [Translation from: Kalamies 1973(6) 4.]

    Get PDF
    Catchability and activity of Perca fluviatilis in relation to temperature is examined. The number of fish caught and water temperature during the 3 summer months was used the assess the numbers of hours of activity of perch. Parallel to the research on activity, large-scale marking was carried out to establish the periods of growth during the year

    Interfacial compatibility of polymer-based structures in electronics

    Get PDF
    Interfacial compatibility of dissimilar materials was investigated to achieve a better understanding of interfacial adhesion in metal/polymer/metal systems. Surface modifications of polymers were applied to improve the adhesion. The modified surfaces were characterised by scanning electron microscopy (SEM), atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS) and contact angle measurements accompanied by surface free energy evaluations. The pull-off test was employed to assess the interfacial adhesion strength. Further, to determine the controlling adhesion mechanism, the fracture surfaces exposed in the pull-off test were examined by microscopy. To achieve modification of certain bulk properties of one of the evaluated polymers (SU8 epoxy resin), new star-shaped oligomers were synthesised and reactively blended with it. Oligomers were characterised by 1H and 13C nuclear magnetic resonance (NMR) spectroscopy, Fourier transform infrared (FTIR) spectroscopy, size exclusion chromatography (SEC) and differential scanning calorimetry (DSC). Films of the blends were spin coated on a silicon wafer for characterisation of the refractive index and a novel non-destructive method was developed to measure selected thermal properties of the films. The information concerning interfacial compatibility obtained in this work is of great practical as well as theoretical importance.reviewe

    Construction of Fusion Protein for Enhanced Small RNA Loading to Extracellular Vesicles

    Get PDF
    Extracellular vesicles (EVs) naturally carry cargo from producer cells, such as RNA and protein, and can transfer these messengers to other cells and tissue. This ability provides an interesting opportunity for using EVs as delivery vehicles for therapeutic agents, such as for gene therapy. However, endogenous loading of cargo, such as microRNAs (miRNAs), is not very efficient as the copy number of miRNAs per EV is quite low. Therefore, new methods and tools to enhance the loading of small RNAs is required. In the current study, we developed fusion protein of EV membrane protein CD9 and RNA-binding protein AGO2 (hCD9.hAGO2). We show that the EVs engineered with hCD9.hAGO2 contain significantly higher levels of miRNA or shRNA (miR-466c or shRNA-451, respectively) compared to EVs that are isolated from cells that only overexpress the desired miRNA or shRNA. These hCD9.hAGO2 engineered EVs also transfer their RNA cargo to recipient cells more efficiently. We were not able to detect changes in gene expression levels in recipient cells after the EV treatments, but we show that the cell viability of HUVECs was increased after hCD9.hAGO2 EV treatments. This technical study characterizes the hCD9.hAGO2 fusion protein for the future development of enhanced RNA loading to EVs

    EU Peatlands: Current Carbon Stocks and Trace Gas Fluxes

    Get PDF
    Peatlands in Europe has formed a significant sink for atmospheric CO2 since the last glacial maximum. Currently they are estimated to hold ca. 42 Gt carbon in the form of peat and are therefore a considerable component in the European carbon budget. Due to the generally wet soil conditions in peatlands they are also significant emitters of the strong greenhouse gas (GHG) methane (CH4) and in some cases also of nitrous oxide (N2O). The EU funded CarboEurope-GHG Concerted Action attempts to develop a reliable and complete greenhouse gas budget for Europe and this report aims to provide a review and synthesis of the available information about GHG exchanges in European peatlands and their underlying processes. A best estimate for all the European countries shows that some are currently sinks for atmospheric CO2 while others are sources. In contrast, for CH4 and N2O, only the sources are relevant. Whilst some countries are CO2 sinks, all countries are net GHG emitters from peatlands. The results presented, however, carry large uncertainties, which cannot be adequately quantified yet. One outstanding uncertainty is the distribution of land use types, particular in Russia, the largest European peat nation. The synthesis of GHG exchange, nevertheless, indicates some interesting features. Russia hosts an estimated 41% of European peatlands and contributes most to all GHG exchanges (CO2: 25%, CH4: 52%, N2O: 26%, Total: 37%). Germany is the second-largest emitter (12% of European total) although it contains only 3.2% of European peatlands. The reason is the use of most of the peatland area for intensive cropland and grassland. The largest CO2 emitters are countries with large agricultural peatland areas (Russia, Germany, Belarus, Poland), the largest N2O emitters are those with large agricultural fen areas (Russia, Germany, Finland). In contrast, the largest CH4 emitters are concentrated in regions with large areas of intact mires, namely Russia and Scandinavia. High average emission densities above 3.5 t C-equiv. ha-1 are found in the Southeast Mediterranean, Germany and the Netherlands where agricultural use of peatlands is intense. Low average emission densities below 0.3 t C-equiv. ha-1 occur where mires and peatland forests dominate, e.g. Finland and the UK. This report concludes by pointing at key gaps in our knowledge about peatland carbon stocks and GHG exchanges which include insufficient basic information on areal distribution of peatlands, measurements of peat depth and also a lack of flux datasets providing full annual budgets of GHG exchanges
    • 

    corecore