47 research outputs found
Spectroscopic Studies of the Iron and Manganese Reconstituted Tyrosyl Radical in Bacillus Cereus Ribonucleotide Reductase R2 Protein
Ribonucleotide reductase (RNR) catalyzes the rate limiting step in DNA synthesis where ribonucleotides are reduced to the corresponding deoxyribonucleotides. Class Ib RNRs consist of two homodimeric subunits: R1E, which houses the active site; and R2F, which contains a metallo cofactor and a tyrosyl radical that initiates the ribonucleotide reduction reaction. We studied the R2F subunit of B. cereus reconstituted with iron or alternatively with manganese ions, then subsequently reacted with molecular oxygen to generate two tyrosyl-radicals. The two similar X-band EPR spectra did not change significantly over 4 to 50 K. From the 285 GHz EPR spectrum of the iron form, a g1-value of 2.0090 for the tyrosyl radical was extracted. This g1-value is similar to that observed in class Ia E. coli R2 and class Ib R2Fs with iron-oxygen cluster, suggesting the absence of hydrogen bond to the phenoxyl group. This was confirmed by resonance Raman spectroscopy, where the stretching vibration associated to the radical (C-O, ν7a = 1500 cm−1) was found to be insensitive to deuterium-oxide exchange. Additionally, the 18O-sensitive Fe-O-Fe symmetric stretching (483 cm−1) of the metallo-cofactor was also insensitive to deuterium-oxide exchange indicating no hydrogen bonding to the di-iron-oxygen cluster, and thus, different from mouse R2 with a hydrogen bonded cluster. The HF-EPR spectrum of the manganese reconstituted RNR R2F gave a g1-value of ∼2.0094. The tyrosyl radical microwave power saturation behavior of the iron-oxygen cluster form was as observed in class Ia R2, with diamagnetic di-ferric cluster ground state, while the properties of the manganese reconstituted form indicated a magnetic ground state of the manganese-cluster. The recent activity measurements (Crona et al., (2011) J Biol Chem 286: 33053–33060) indicates that both the manganese and iron reconstituted RNR R2F could be functional. The manganese form might be very important, as it has 8 times higher activity
Species-specific, pan-European diameter increment models based on data of 2.3 million trees
ResearchBackground: Over the last decades, many forest simulators have been developed for the forests of individual
European countries. The underlying growth models are usually based on national datasets of varying size, obtained
from National Forest Inventories or from long-term research plots. Many of these models include country- and
location-specific predictors, such as site quality indices that may aggregate climate, soil properties and topography
effects. Consequently, it is not sensible to compare such models among countries, and it is often impossible to
apply models outside the region or country they were developed for. However, there is a clear need for more
generically applicable but still locally accurate and climate sensitive simulators at the European scale, which requires
the development of models that are applicable across the European continent. The purpose of this study is to
develop tree diameter increment models that are applicable at the European scale, but still locally accurate. We
compiled and used a dataset of diameter increment observations of over 2.3 million trees from 10 National Forest
Inventories in Europe and a set of 99 potential explanatory variables covering forest structure, weather, climate, soil
and nutrient deposition.
Results: Diameter increment models are presented for 20 species/species groups. Selection of explanatory variables
was done using a combination of forward and backward selection methods. The explained variance ranged from
10% to 53% depending on the species. Variables related to forest structure (basal area of the stand and relative size
of the tree) contributed most to the explained variance, but environmental variables were important to account for
spatial patterns. The type of environmental variables included differed greatly among species.
Conclusions: The presented diameter increment models are the first of their kind that are applicable at the
European scale. This is an important step towards the development of a new generation of forest development
simulators that can be applied at the European scale, but that are sensitive to variations in growing conditions and
applicable to a wider range of management systems than before. This allows European scale but detailed analyses
concerning topics like CO2 sequestration, wood mobilisation, long term impact of management, etcinfo:eu-repo/semantics/publishedVersio
HF-EPR, Raman, UV/VIS Light Spectroscopic, and DFT Studies of the Ribonucleotide Reductase R2 Tyrosyl Radical from Epstein-Barr Virus
Epstein-Barr virus (EBV) belongs to the gamma subfamily of herpes viruses, among the most common pathogenic viruses in humans worldwide. The viral ribonucleotide reductase small subunit (RNR R2) is involved in the biosynthesis of nucleotides, the DNA precursors necessary for viral replication, and is an important drug target for EBV. RNR R2 generates a stable tyrosyl radical required for enzymatic turnover. Here, the electronic and magnetic properties of the tyrosyl radical in EBV R2 have been determined by X-band and high-field/high-frequency electron paramagnetic resonance (EPR) spectroscopy recorded at cryogenic temperatures. The radical exhibits an unusually low g1-tensor component at 2.0080, indicative of a positive charge in the vicinity of the radical. Consistent with these EPR results a relatively high C-O stretching frequency associated with the phenoxyl radical (at 1508 cm−1) is observed with resonance Raman spectroscopy. In contrast to mouse R2, EBV R2 does not show a deuterium shift in the resonance Raman spectra. Thus, the presence of a water molecule as a hydrogen bond donor moiety could not be identified unequivocally. Theoretical simulations showed that a water molecule placed at a distance of 2.6 Å from the tyrosyl-oxygen does not result in a detectable deuterium shift in the calculated Raman spectra. UV/VIS light spectroscopic studies with metal chelators and tyrosyl radical scavengers are consistent with a more accessible dimetal binding/radical site and a lower affinity for Fe2+ in EBV R2 than in Escherichia coli R2. Comparison with previous studies of RNR R2s from mouse, bacteria, and herpes viruses, demonstrates that finely tuned electronic properties of the radical exist within the same RNR R2 Ia class
Mechanism of Assembly of the Dimanganese-Tyrosyl Radical Cofactor of Class Ib Ribonucleotide Reductase: Enzymatic Generation of Superoxide Is Required for Tyrosine Oxidation via a Mn(III)Mn(IV) Intermediate
Ribonucleotide reductases (RNRs) utilize radical chemistry to reduce nucleotides to deoxynucleotides in all organisms. In the class Ia and Ib RNRs, this reaction requires a stable tyrosyl radical (Y•) generated by oxidation of a reduced dinuclear metal cluster. The Fe[superscript III][subscript 2]-Y• cofactor in the NrdB subunit of the class Ia RNRs can be generated by self-assembly from Fe[superscript II][subscript 2]-NrdB, O[subscript 2], and a reducing equivalent. By contrast, the structurally homologous class Ib enzymes require a Mn[superscript III][subscript 2]-Y• cofactor in their NrdF subunit. Mn[superscript II][subscript 2]-NrdF does not react with O[subscript 2], but it binds the reduced form of a conserved flavodoxin-like protein, NrdI[subscript hq], which, in the presence of O[subscript 2], reacts to form the Mn[superscript III][subscript 2]-Y• cofactor. Here we investigate the mechanism of assembly of the Mn[superscript III][subscript 2]-Y• cofactor in Bacillus subtilis NrdF. Cluster assembly from Mn[superscript II][subscript 2]-NrdF, NrdI[subscript hq], and O[subscript 2] has been studied by stopped flow absorption and rapid freeze quench EPR spectroscopies. The results support a mechanism in which NrdI[subscript hq] reduces O[subscript 2] to O[subscript 2]•– (40–48 s[superscript –1], 0.6 mM O[subscript 2]), the O[subscript 2]•– channels to and reacts with Mn[superscript II][subscript 2]-NrdF to form a Mn[superscript III]Mn[superscript IV] intermediate (2.2 ± 0.4 s[superscript –1]), and the Mn[superscript III]Mn[superscript IV] species oxidizes tyrosine to Y• (0.08–0.15 s[superscript –1]). Controlled production of O[subscript 2]•– by NrdI[subscript hq] during class Ib RNR cofactor assembly both circumvents the unreactivity of the Mn[superscript II][subscript 2] cluster with O[subscript 2] and satisfies the requirement for an “extra” reducing equivalent in Y• generation.National Institutes of Health (U.S.) (Grant GM81393)United States. Dept. of Defense (National Defense Science and Engineering Graduate (NDSEG) Fellowships
Assessing forest availability for wood supply in Europe
14 Pág.The quantification of forests available for wood supply (FAWS) is essential for decision-making with regard to the maintenance and enhancement of forest resources and their contribution to the global carbon cycle. The provision of harmonized forest statistics is necessary for the development of forest associated policies and to support decision-making. Based on the National Forest Inventory (NFI) data from 13 European countries, we quantify and compare the areas and aboveground dry biomass (AGB) of FAWS and forest not available for wood supply (FNAWS) according to national and reference definitions by determining the restrictions and associated thresholds considered at country level to classify forests as FAWS or FNAWS. FAWS represent between 75 and 95 % of forest area and AGB for most of the countries in this study. Economic restrictions are the main factor limiting the availability of forests for wood supply, accounting for 67 % of the total FNAWS area and 56 % of the total FNAWS AGB, followed by environmental restrictions. Profitability, slope and accessibility as economic restrictions, and protected areas as environmental restrictions are the factors most frequently considered to distinguish between FAWS and FNAWS. With respect to the area of FNAWS associated with each type of restriction, an overlap among the restrictions of 13.7 % was identified. For most countries, the differences in the FNAWS areas and AGB estimates between national and reference definitions ranged from 0 to 5 %. These results highlight the applicability and reliability of a FAWS reference definition for most of the European countries studied, thereby facilitating a consistent approach to assess forests available for supply for the purpose of international reporting.This research was supported by the Specific contract n. 18 “Use of National Forest Inventories data to estimate area and above ground biomass in European forests not available for wood supply” in the context of the Framework contract for the provision of forest data and services supporting the European Forest Data Centre 2012/ S 78-127532 of 21/04/2012 of the Joint Research Centre of the European Commission; the EG-013-72 agreement of the Ministry of Agriculture, Fisheries and Food (MAPA) and the INIA belonging to the Spanish
Ministry of Science and Innovation (MICINN); and the project No.APVV-15-0265 granted by the Slovak Research and Development
Agency.Peer reviewe
Growing stock monitoring by European National Forest Inventories: Historical origins, current methods and harmonisation
peer reviewedWood resources have been essential for human welfare throughout history. Also nowadays, the volume of growing stock (GS) is considered one of the most important forest attributes monitored by National Forest Inventories (NFIs) to inform policy decisions and forest management planning. The origins of forest inventories closely relate to times of early wood shortage in Europe causing the need to explore and plan the utilisation of GS in the catchment areas of mines, saltworks and settlements. Over time, forest surveys became more detailed and their scope turned to larger areas, although they were still conceived as stand-wise inventories. In the 1920s, the first sample-based NFIs were introduced in the northern European countries. Since the earliest beginnings, GS monitoring approaches have considerably evolved. Current NFI methods differ due to country-specific conditions, inventory traditions, and information needs. Consequently, GS estimates were lacking international comparability and were therefore subject to recent harmonisation efforts to meet the increasing demand for consistent forest resource information at European level. As primary large-area monitoring programmes in most European countries, NFIs assess a multitude of variables, describing various aspects of sustainable forest management, including for example wood supply, carbon sequestration, and biodiversity. Many of these contemporary subject matters involve considerations about GS and its changes, at different geographic levels and time frames from past to future developments according to scenario simulations. Due to its historical, continued and currently increasing importance, we provide an up-to-date review focussing on large-area GS monitoring where we i) describe the origins and historical development of European NFIs, ii) address the terminology and present GS definitions of NFIs, iii) summarise the current methods of 23 European NFIs including sampling methods, tree measurements, volume models, estimators, uncertainty components, and the use of air- and space-borne data sources, iv) present the recent progress in NFI harmonisation in Europe, and v) provide an outlook under changing climate and forest-based bioeconomy objectives
Establishing bridging functions for harmonizing growing stock estimates: Examples from European National Forest Inventories
peer reviewedEstimates of growing stock in European countries vary mainly by using different thresholds for dbh of sample trees, as well as by the inclusion or exclusion of stump and stem top volume. European national forest inventories use dbh thresholds ranging from 0 to 12 cm in estimating the volume of growing stock. COST Action E43 has agreed to a reference definition for growing stock with a dbh threshold of 0 cm. With use of national volume distributions by dbh classes, models for estimating the proportions of growing stock between the national threshold and the 0-cm threshold were constructed. Models for characterizing growing stock distributions were tested, and their predictive abilities were investigated. Similar comparisons were made with respect to the volume of stumps and stem tops. Examples of estimation methods and the resulting percentages of these tree elements of total growing stock are presented