552 research outputs found

    On the growth of normal faults and the existence of flats and ramps along the El Asnam active fold and thrust system

    Get PDF
    The combination of detailed topographic leveling on the southwest segment of the El Asnam thrust fault with existing seismic and geologic data implies that the geometry of this fault involves shallow dipping flats and steep ramps. The fault appears to be growing along strike toward the southwest end, where the main shock initiated in 1980. From a depth of about 10 km, the main thrust appears to ramp to the basement-Cenozoic cover interface on a plane striking N40°E and dipping 50°–55° to the northwest. Along the southwest segment where folding has not yet developed, the thrust continues steeply through the Cenozoic cover to the near surface where it flattens, causing normal faulting. Along the central and northeast segments, which display a more evolved fold structure, the deep thrust probably flattens at a depth of 5–6 km, into a decollement along the Cenozoic-Jurassic interface before ramping to the surface. The Sara El Marouf and Kef El Mes anticlines have thus formed as fault propagation folds. Normal faults at Beni Rached probably branch with the thrust to maintain kinematic compatibility between the deep ramp and decollement. The greater separation (∼7 km) between the normal faults at Beni Rached and the thrust where it crosses Oued Cheliff than along the southwest segment (∼1 km) reflects the greater depth of the ramp to flat bend. We infer that the September 9, 1954, earthquake activated only the central deep segment of the main thrust together with the Beni Rached normal faults, while that of October 10, 1980, activated the whole system of flat decollements, ramp thrusts and compatibility normal faults. Further complexities of the faulting in map view are related to changes of strike of the thrust (in particular north of Oued Cheliff)

    Active Thrusting and Folding Along the Northern Tien Shan and Late Cenozoic Rotation of the Tarim Relative to Dzungaria and Kazakhstan

    Get PDF
    We have studied geometries and rates of late Cenozoic thrust faulting and folding along the northern piedmont of the Tien Shan mountain belt, West of Urumqi, where the M= 8.3 Manas earthquake occurred on December 23, 1906. The northern range of the Tien Shan, rising above 5000 m, overthrusts a flexural foredeep, filled with up to 11,000 m of sediment, of the Dzungarian basement. Our fieldwork reveals that the active thrust reaches the surface 30 km north of the range front, within a 200-km-long zone of Neogene-Quaternary anticlines. Fault scarps are clearest across inset terraces within narrow valleys incised through the anticlines by large rivers flowing down from the range. In all the valleys, the scarps offset vertically the highest terrace surface by the same amount (10.2±0.7 m). Inferring an early Holocene age (10±2 kyr) for this terrace, which is continuous with the largest recent fans of the piedmont, yields a rate of vertical throw of 1.0±0.3mm/yr on the main active thrust at the surface. A quantitative morphological analysis of the degradation of terrace edges that are offset by the thrust corroborates such a rate and yields a mass diffusivity of 5.5±2.5 m^2/kyr. A rather fresh surface scarp, 0.8±0.15 m high, that is unlikely to result from shallow earthquakes with 6 < M < 7 in the last 230 years, is visible at the extremities of the main fold zone. We associate this scarp with the 1906 Manas earthquake and infer that a structure comprising a deep basement ramp under the range, gently dipping flats in the foreland, and shallow ramps responsible for the formation of the active, fault propagation anticlines could have been activated by that earthquake. If so, the return period of a 1906 type event would be 850 ±380 years. The small size of the scarp for an earthquake of this magnitude suggests that a large fraction of the slip at depth (≈2/3) is taken up by incremental folding near the surface. Comparable earthquakes might activate flat detachments and ramp anticlines at a distance from the front of other rising Quaternary ranges such as the San Gabriel mountains in California or the Mont Blanc-Aar massifs in the Alps. We estimate the finite Cenozoic shortening of the folded Dzungarian sediments to be of the order of 30 km and the Cenozoic shortening rate to have been 3 ± 1.5 mm/yr. Assuming comparable shortening along the Tarim piedmont and minor additional active thrusting within the mountain belt, we infer the rate of shortening across the Tien Shan to be at least 6 ± 3 mm/yr at the longitude of Manas (≈85.5°E). A total shortening of 125±30 km is estimated from crustal thickening, assuming local Airy isostatic equilibrium. Under the same assumption, serial N-S sections imply that Cenozoic shortening across the belt increases westwards to 203±50 km at the longitude of Kashgar (≈ 76 °E), as reflected by the westward increase of the width of the belt. This strain gradient implies a clockwise rotation of Tarim relative to Dzungaria and Kazakhstan of 7±2.5° around a pole located near the eastern extremity of the Tien Shan, west of Hami (≈96°E, 43.5°N), comparable to that revealed by paleomagnetism between Tarim and Dzungaria (8.6° ± 8.7°). A 6 mm/yr rate of shortening at the longitude of Manas would imply a rate of rotation of 0.45°/m.y. and would be consistent with a shortening rate of 12 mm/yr north of Kashgar. Taking such values to be representative of Late Cenozoic rates would place the onset of reactivation of the Tien Shan by the India-Asia collision in the early to middle Miocene (16 +22/−9 m.y.), in accord with the existence of particularly thick late Neogene and Quaternary deposits. Such reactivation would thus have started much later than the collision, roughly at the time of the great mid-Miocene changes in tectonic regimes, denudation and sedimentation rates observed in southeast Asia, the Himalayas and the Bay of Bengal, and of the correlative rapid change in seawater Sr isotopic ratio (20 to 15 Ma). Like these other changes, the rise of the Tien Shan might be a distant consequence of the end of Indochina's escape

    The Pingding segment of the Altyn Tagh Fault (91E): Holocene slip-rate determination from cosmogenic radionuclide dating of offset fluvial terraces

    Get PDF
    International audienceMorphochronologic slip-rates on the Altyn Tagh Fault (ATF) along the southern front of the Pingding Shan at 90.5E are determined by cosmogenic radionuclide (CRN) dating of seven offset terraces at two sites. The terraces are defined based upon morphology, elevation and dating, together with fieldwork and high-resolution satellite analysis. The majority of the CRN model ages fall within narrow ranges (<2 ka) on the four main terraces (T1, T2, T3 and T3′), and allow a detailed terrace chronology. Bounds on the terrace ages and offsets of 5 independent terraces yield consistent slip-rate estimates. The long-term slip-rate of 13.9+/-1.1 mm/yr is defined at the 95% confidence level, as the joint rate probability distribution of the rate derived from each independent terrace. It falls within the bounds of all the rates defined on the central Altyn Tagh Fault between the Cherchen He (86.4E) and Akato Tagh (88E) sites. This rate is 10 mm/yr less than the upper rate determined near Tura at 87E, in keeping with the inference of an eastward decreasing rate due to progressive loss of slip to thrusts branching off the fault southwards but it is greater than the 9+/-4 mm/yr rate determined at 90E by GPS surveys and other geodetic short-term rates defined elsewhere along the ATF. Whether such disparate rates will ultimately be reconciled by a better understanding of fault mechanics, resolved transient deformations during the seismic cycle or by more accurate measurements made with either approach remains an important issue

    Performance of highly sensitive cardiac troponin T assay to detect ischaemia at PET-CT in low-risk patients with acute coronary syndrome: a prospective observational study.

    Get PDF
    Highly sensitive troponin T (hs-TnT) assay has improved clinical decision-making for patients admitted with chest pain. However, this assay's performance in detecting myocardial ischaemia in a lowrisk population has been poorly documented. To assess hs-TnT assay's performance to detect myocardial ischaemia at positron emission tomography/CT (PET-CT) in low-risk patients admitted with chest pain. Patients admitted for chest pain with a nonconclusive ECG and negative standard cardiac troponin T results at admission and after 6 hours were prospectively enrolled. Their hs-TnT samples were at T0, T2 and T6. Physicians were blinded to hs-TnT results. All patients underwent a PET-CT at rest and during adenosine-induced stress. All patients with a positive PET-CT result underwent a coronary angiography. Forty-eight patients were included. Six had ischaemia at PET-CT. All of them had ≥1 significant stenosis at coronary angiography. Areas under the curve (95% CI) for predicting significant ischaemia at PET-CT using hs-TnT were 0.764 (0.515 to 1.000) at T0, 0.812(0.616 to 1.000) at T2 and 0.813(0.638 to 0.989) at T6. The receiver operating characteristicbased optimal cut-off value for hs-TnT at T0, T2 and T6 needed to exclude significant ischaemia at PET-CT was &lt;4 ng/L. Using this value, sensitivity, specificity, positive and negative predictive values of hs-TnT to predict significant ischaemia were 83%/38%/16%/94% at T0, 100%/40%/19%/100% at T2 and 100%/43%/20%/100% at T6, respectively. Our findings suggest that in low-risk patients, using the hs-TnT assay with a cut-off value of 4 ng/L demonstrates excellent negative predictive value to exclude myocardial ischaemia detection at PET-CT, at the expense of weak specificity and positive predictive value. ClinicalTrials.gov Identifier: NCT01374607

    The Mw = 6.3, November 21, 2004, Les Saintes earthquake (Guadeloupe): Tectonic setting, slip model and static stress changes,

    Get PDF
    International audienceOn November 21, 2004, a magnitude 6.3 earthquake occurred offshore, 10 km south of Les Saintes archipelago in Guadeloupe (French West Indies). There were more than 30000 aftershocks recorded in the following two years, most of them at shallow depth near the islands of the archipelago. The main shock and its main aftershock of February 14, 2005 (Mw = 5.8) ruptured a NE-dipping normal fault (Roseau fault), mapped and identified as active from high-resolution bathymetric data a few years before. This fault belongs to an arc-parallel en echelon fault system that follows the inner edge of the northern part of the Lesser Antilles arc, accommodating the sinistral component of oblique convergence between the North American and Caribbean plates. The distribution of aftershocks and damage (destruction and landslides) are consistent with the main fault plane location and attitude. The slip model of the main shock, obtained by inverting jointly global broadband and local strong motion records, is characterized by two main slip zones located 5 to 10 km to the SE and NW of the hypocenter. The main shock is shown to have increased the Coulomb stress at the tips of the ruptured plane by more than 4 bars where most of the aftershocks occurred, implying that failures on fault system were mainly promoted by static stress changes. The earthquake also had an effect on volcanic activity since the Boiling Lake in Dominica drained twice, probably as a result of the extensional strain induced by the earthquake and its main aftershock

    Mantle transition zone structure beneath India and Western China from migration of PP and SS precursors

    No full text
    We investigate the seismic structure of the upper-mantle and mantle transition zone beneath India and Western China using PP and SS underside reflections offseismic discontinuities, which arrive as precursors to the PP and SS arrival. We use high-resolution array seismic techniques to identify precursory energy and to map lateral variations of discontinuity depths. We find deep reflections offthe 410 km discontinuity (PP and SS) beneath Tibet, Western China and India at depths of 410-440 km and elevated underside reflections of the 410 km discontinuity at 370-390 km depth beneath the Tien Shan region and Eastern Himalayas. These reflections likely correspond to the olivine to wadsleyite phase transition. The 410 km discontinuity appears to deepen in Central and Northern Tibet. We also find reflections offthe 660 km discontinuity beneath Northern China at depths between 660 and 700 km (PP and S660S) which could be attributed to the mineral transformation of ringwoodite to magnesiowuestite and perovskite. These observations could be consistent with the presence of cold material in the middle and lower part of the mantle transition zone in this region. We also find a deeper reflector between 700 and 740 km depth beneath Tibet which cannot be explained by a depressed 660 km discontinuity. This structure could, however, be explained by the segregation of oceanic crust and the formation of a neutrally buoyant garnet-rich layer beneath the mantle transition zone, due to subduction of oceanic crust of the Tethys Ocean. For several combinations of sources and receivers we do not detect arrivals of PP and S660S although similar combinations of sources and receivers give well-developed PP and S660S arrivals. Our thermodynamic modelling of seismic structure for a range of compositions and mantle geotherms shows that non-observations of PP and S660S arrivals could be caused by the dependence of underside reflection coefficients on the incidence angle of the incoming seismic waves. Apart from reflections offthe 410 and 660 km discontinuities, we observe intermittent reflectors at 300 and 520 km depth. The discontinuity structure of the study region likely reflects lateral thermal and chemical variations in the upper-mantle and mantle transition zone connected to past and present subduction and mantle convection processes
    corecore