140 research outputs found

    Atomic Quantum Simulation of U(N) and SU(N) Non-Abelian Lattice Gauge Theories

    Full text link
    Using ultracold alkaline-earth atoms in optical lattices, we construct a quantum simulator for U(N) and SU(N) lattice gauge theories with fermionic matter based on quantum link models. These systems share qualitative features with QCD, including chiral symmetry breaking and restoration at non-zero temperature or baryon density. Unlike classical simulations, a quantum simulator does not suffer from sign problems and can address the corresponding chiral dynamics in real time.Comment: 12 pages, 5 figures. Main text plus one basic introduction to the topic and one supplementary material on implementation. Final versio

    SO(3) "Nuclear Physics" with ultracold Gases

    Full text link
    An ab initio calculation of nuclear physics from Quantum Chromodynamics (QCD), the fundamental SU(3) gauge theory of the strong interaction, remains an outstanding challenge. Here, we discuss the emergence of key elements of nuclear physics using an SO(3) lattice gauge theory as a toy model for QCD. We show that this model is accessible to state-of-the-art quantum simulation experiments with ultracold atoms in an optical lattice. First, we demonstrate that our model shares characteristic many-body features with QCD, such as the spontaneous breakdown of chiral symmetry, its restoration at finite baryon density, as well as the existence of few-body bound states. Then we show that in the one-dimensional case, the dynamics in the gauge invariant sector can be encoded as a spin S=3/2 Heisenberg model, i.e., as quantum magnetism, which has a natural realization with bosonic mixtures in optical lattices, and thus sheds light on the connection between non-Abelian gauge theories and quantum magnetism.Comment: 34 pages, 9 figure

    Atomic Quantum Simulation of Dynamical Gauge Fields coupled to Fermionic Matter: From String Breaking to Evolution after a Quench

    Full text link
    Using a Fermi-Bose mixture of ultra-cold atoms in an optical lattice, we construct a quantum simulator for a U(1) gauge theory coupled to fermionic matter. The construction is based on quantum links which realize continuous gauge symmetry with discrete quantum variables. At low energies, quantum link models with staggered fermions emerge from a Hubbard-type model which can be quantum simulated. This allows us to investigate string breaking as well as the real-time evolution after a quench in gauge theories, which are inaccessible to classical simulation methods.Comment: 14 pages, 5 figures. Main text plus one general supplementary material and one basic introduction to the topic. Published versio

    Constraint Effective Potential of the Magnetization in the Quantum XY Model

    Full text link
    Using an improved estimator in the loop-cluster algorithm, we investigate the constraint effective potential of the magnetization in the spin 12\tfrac{1}{2} quantum XY model. The numerical results are in excellent agreement with the predictions of the corresponding low-energy effective field theory. After its low-energy parameters have been determined with better than permille precision, the effective theory makes accurate predictions for the constraint effective potential which are in excellent agreement with the Monte Carlo data. This shows that the effective theory indeed describes the physics in the low-energy regime quantitatively correctly.Comment: 21 pages, 7 figure

    Hypoxia Impairs Primordial Germ Cell Migration in Zebrafish (Danio rerio) Embryos

    Get PDF
    Background: As a global environmental concern, hypoxia is known to be associated with many biological and physiological impairments in aquatic ecosystems. Previous studies have mainly focused on the effect of hypoxia in adult animals. However, the effect of hypoxia and the underlying mechanism of how hypoxia affects embryonic development of aquatic animals remain unclear. Methodology/Principal Findings: In the current study, the effect of hypoxia on primordial germ cell (PGC) migration in zebrafish embryos was investigated. Hypoxic embryos showed PGC migration defect as indicated by the presence of mis-migrated ectopic PGCs. Insulin-like growth factor (IGF) signaling is required for embryonic germ line development. Using real-time PCR, we found that the mRNA expression levels of insulin-like growth factor binding protein (IGFBP-1), an inhibitor of IGF bioactivity, were significantly increased in hypoxic embryos. Morpholino knockdown of IGFBP-1 rescued the PGC migration defect phenotype in hypoxic embryos, suggesting the role of IGFBP-1 in inducing PGC mis-migration. Conclusions/Significance: This study provides novel evidence that hypoxia disrupts PGC migration during embryonic development in fish. IGF signaling is shown to be one of the possible mechanisms for the causal link between hypoxia and PGC migration. We propose that hypoxia causes PGC migration defect by inhibiting IGF signaling through the induction of IGFBP-1

    A Macroecological Analysis of SERA Derived Forest Heights and Implications for Forest Volume Remote Sensing

    Get PDF
    Individual trees have been shown to exhibit strong relationships between DBH, height and volume. Often such studies are cited as justification for forest volume or standing biomass estimation through remote sensing. With resolution of common satellite remote sensing systems generally too low to resolve individuals, and a need for larger coverage, these systems rely on descriptive heights, which account for tree collections in forests. For remote sensing and allometric applications, this height is not entirely understood in terms of its location. Here, a forest growth model (SERA) analyzes forest canopy height relationships with forest wood volume. Maximum height, mean, H100, and Lorey's height are examined for variability under plant number density, resource and species. Our findings, shown to be allometrically consistent with empirical measurements for forested communities world-wide, are analyzed for implications to forest remote sensing techniques such as LiDAR and RADAR. Traditional forestry measures of maximum height, and to a lesser extent H100 and Lorey's, exhibit little consistent correlation with forest volume across modeled conditions. The implication is that using forest height to infer volume or biomass from remote sensing requires species and community behavioral information to infer accurate estimates using height alone. SERA predicts mean height to provide the most consistent relationship with volume of the height classifications studied and overall across forest variations. This prediction agrees with empirical data collected from conifer and angiosperm forests with plant densities ranging between 102–106 plants/hectare and heights 6–49 m. Height classifications investigated are potentially linked to radar scattering centers with implications for allometry. These findings may be used to advance forest biomass estimation accuracy through remote sensing. Furthermore, Lorey's height with its specific relationship to remote sensing physics is recommended as a more universal indicator of volume when using remote sensing than achieved using either maximum height or H100

    DNA Interactions of Monofunctional Organometallic Ruthenium(II) Antitumor Complexes in Cell-free Media

    Get PDF
    Modifications of natural DNA in a cell-free medium by antitumor monodentate Ru(II) arene compounds of the general formula [(eta 6-arene)Ru(en)Cl]+ (arene ) biphenyl, dihydroanthracene, tetrahydroanthracene, p-cymene, or benzene; en ) ethylenediamine) were studied by atomic absorption, melting behavior, transcription mapping, circular and linear dichroism, plasmid unwinding, competitive ethidium displacement, and differential pulse polarography. The results indicate that these complexes bind preferentially to guanine residues in double-helical DNA. The data are consistent with DNA binding of the complexes containing biphenyl, dihydroanthracene, or tetrahydroanthracene ligands that involves combined coordination to G N7 and noncovalent, hydrophobic interactions between the arene ligand and DNA, which may include arene intercalation and minor groove binding. In contrast, the single hydrocarbon rings in the p-cymene and benzene ruthenium complexes cannot interact with double-helical DNA by intercalation. Interestingly, the adducts of the complex containing p-cymene ligand, which has methyl and isopropyl substituents, distort the conformation and thermally destabilize double-helical DNA distinctly more than the adducts of the three multiring ruthenium arene compounds. It has been suggested that the different character of conformational alterations induced in DNA, and the resulting thermal destabilization, may affect differently further “downstream” effects of damaged DNA and consequently may result in different biological effects of this new class of metal-based antitumor compounds. The results point to a unique profile of DNA binding for Ru(II) arene compounds, suggesting that a search for new anticancer compounds based on this class of complexes may also lead to an altered profile of biological activity in comparison with that of metal-based antitumor drugs already used in the clinic or currently on clinical trials

    The V471A polymorphism in autophagy-related gene ATG7 modifies age at onset specifically in Italian Huntington disease patients

    Get PDF
    The cause of Huntington disease (HD) is a polyglutamine repeat expansion of more than 36 units in the huntingtin protein, which is inversely correlated with the age at onset of the disease. However, additional genetic factors are believed to modify the course and the age at onset of HD. Recently, we identified the V471A polymorphism in the autophagy-related gene ATG7, a key component of the autophagy pathway that plays an important role in HD pathogenesis, to be associated with the age at onset in a large group of European Huntington disease patients. To confirm this association in a second independent patient cohort, we analysed the ATG7 V471A polymorphism in additional 1,464 European HD patients of the “REGISTRY” cohort from the European Huntington Disease Network (EHDN). In the entire REGISTRY cohort we could not confirm a modifying effect of the ATG7 V471A polymorphism. However, analysing a modifying effect of ATG7 in these REGISTRY patients and in patients of our previous HD cohort according to their ethnic origin, we identified a significant effect of the ATG7 V471A polymorphism on the HD age at onset only in the Italian population (327 patients). In these Italian patients, the polymorphism is associated with a 6-years earlier disease onset and thus seems to have an aggravating effect. We could specify the role of ATG7 as a genetic modifier for HD particularly in the Italian population. This result affirms the modifying influence of the autophagic pathway on the course of HD, but also suggests population-specific modifying mechanisms in HD pathogenesis

    Identification of genetic variants associated with Huntington's disease progression: a genome-wide association study

    Get PDF
    Background Huntington's disease is caused by a CAG repeat expansion in the huntingtin gene, HTT. Age at onset has been used as a quantitative phenotype in genetic analysis looking for Huntington's disease modifiers, but is hard to define and not always available. Therefore, we aimed to generate a novel measure of disease progression and to identify genetic markers associated with this progression measure. Methods We generated a progression score on the basis of principal component analysis of prospectively acquired longitudinal changes in motor, cognitive, and imaging measures in the 218 indivduals in the TRACK-HD cohort of Huntington's disease gene mutation carriers (data collected 2008–11). We generated a parallel progression score using data from 1773 previously genotyped participants from the European Huntington's Disease Network REGISTRY study of Huntington's disease mutation carriers (data collected 2003–13). We did a genome-wide association analyses in terms of progression for 216 TRACK-HD participants and 1773 REGISTRY participants, then a meta-analysis of these results was undertaken. Findings Longitudinal motor, cognitive, and imaging scores were correlated with each other in TRACK-HD participants, justifying use of a single, cross-domain measure of disease progression in both studies. The TRACK-HD and REGISTRY progression measures were correlated with each other (r=0·674), and with age at onset (TRACK-HD, r=0·315; REGISTRY, r=0·234). The meta-analysis of progression in TRACK-HD and REGISTRY gave a genome-wide significant signal (p=1·12 × 10−10) on chromosome 5 spanning three genes: MSH3, DHFR, and MTRNR2L2. The genes in this locus were associated with progression in TRACK-HD (MSH3 p=2·94 × 10−8 DHFR p=8·37 × 10−7 MTRNR2L2 p=2·15 × 10−9) and to a lesser extent in REGISTRY (MSH3 p=9·36 × 10−4 DHFR p=8·45 × 10−4 MTRNR2L2 p=1·20 × 10−3). The lead single nucleotide polymorphism (SNP) in TRACK-HD (rs557874766) was genome-wide significant in the meta-analysis (p=1·58 × 10−8), and encodes an aminoacid change (Pro67Ala) in MSH3. In TRACK-HD, each copy of the minor allele at this SNP was associated with a 0·4 units per year (95% CI 0·16–0·66) reduction in the rate of change of the Unified Huntington's Disease Rating Scale (UHDRS) Total Motor Score, and a reduction of 0·12 units per year (95% CI 0·06–0·18) in the rate of change of UHDRS Total Functional Capacity score. These associations remained significant after adjusting for age of onset. Interpretation The multidomain progression measure in TRACK-HD was associated with a functional variant that was genome-wide significant in our meta-analysis. The association in only 216 participants implies that the progression measure is a sensitive reflection of disease burden, that the effect size at this locus is large, or both. Knockout of Msh3 reduces somatic expansion in Huntington's disease mouse models, suggesting this mechanism as an area for future therapeutic investigation

    Wie schneiden Sie ab?: Studie über Kontroll- und Prüfungsaktivitäten bei mittelgrossen Unternehmen, Spitälern und Hochschulen in der Schweiz

    Full text link
    Kontroll- und Prüfungsaktivitäten unterstützen den Verwaltungsrat und die Geschäftsleitung bei der Steuerung und Kontrolle des Unternehmens. Bei mittelgrossen Unternehmen ist aufgrund der begrenzten personellen und finanziellen Ressourcen ein effektiver und effizienter Einsatz dieser Aktivitäten unerlässlich. Auch bei Spitälern und Hochschulen gewinnen Kontroll- und Prüfungsaktivitäten infolge erhöhter Wettbewerbsintensität und steigenden Kostendrucks sowie zunehmender Unabhängigkeit dieser Organisationen an Bedeutung. Vor diesem Hintergrund haben das Institut für Rechnungswesen und Controlling der Universität Zürich und die PricewaterhouseCoopers AG im Sommer 2008 untersucht, ob und in welchem Ausmass Kontroll- und Prüfungsaktivitäten bei mittelgrossen Unternehmen, Spitälern und Hochschulen vorhanden sind, wie sie ausgestaltet sind und wie die einzelnen Aktivitäten aufeinander abgestimmt werden. Des Weiteren wurden die diesbezüglichen Erwartungen und die gegenwärtigen Herausforderungen der befragten Organisationen eruiert
    corecore