406 research outputs found

    Sperm competition-induced plasticity in the speed of spermatogenesis

    Get PDF
    Background: Sperm competition between rival ejaculates over the fertilization of ova typically selects for the production of large numbers of sperm. An obvious way to increase sperm production is to increase testis size, and most empirical work has focussed on this parameter. Adaptive plasticity in sperm production rate could also arise due to variation in the speed with which each spermatozoon is produced, but whether animals can respond to relevant environmental conditions by modulating the kinetics of spermatogenesis in this way has not been experimentally investigated. Results: Here we demonstrate that the simultaneously hermaphroditic flatworm Macrostomum lignano exhibits substantial plasticity in the speed of spermatogenesis, depending on the social context: worms raised under higher levels of sperm competition produce sperm faster. Conclusions: Our findings overturn the prevailing view that the speed of spermatogenesis is a static property of a genotype, and demonstrate the profound impact that social environmental conditions can exert upon a key developmental process. We thus identify, to our knowledge, a novel mechanism through which sperm production rate is maximised under sperm competition

    Lack of recognition by global-genome nucleotide excision repair accounts for the high mutagenicity and persistence of aristolactam-DNA adducts

    Get PDF
    Exposure to aristolochic acid (AA), a component of Aristolochia plants used in herbal remedies, is associated with chronic kidney disease and urothelial carcinomas of the upper urinary tract. Following metabolic activation, AA reacts with dA and dG residues in DNA to form aristolactam (AL)-DNA adducts. These mutagenic lesions generate a unique TP53 mutation spectrum, dominated by A : T to T : A transversions with mutations at dA residues located almost exclusively on the non-transcribed strand. We determined the level of AL-dA adducts in human fibroblasts treated with AA to determine if this marked strand bias could be accounted for by selective resistance to global-genome nucleotide excision repair (GG-NER). AL-dA adduct levels were elevated in cells deficient in GG-NER and transcription-coupled NER, but not in XPC cell lines lacking GG-NER only. In vitro, plasmids containing a single AL-dA adduct were resistant to the early recognition and incision steps of NER. Additionally, the NER damage sensor, XPC-RAD23B, failed to specifically bind to AL-DNA adducts. However, placing AL-dA in mismatched sequences promotes XPC-RAD23B binding and renders this adduct susceptible to NER, suggesting that specific structural features of this adduct prevent processing by NER. We conclude that AL-dA adducts are not recognized by GG-NER, explaining their high mutagenicity and persistence in target tissues

    Longitudinal increase in the detection rate of Mycobacterium chimaera in heater-cooler device-derived water samples

    Full text link
    Colonization with Mycobacterium chimaera and other nontuberculous mycobacteria (NTM) has been reported for heater-cooler devices (HCD) produced by several manufacturers. Up to now, exclusively LivaNova (London, UK) HCDs have been associated with M. chimaera infections after cardiac surgery. The vast majority of studies on HCD colonization were cross-sectional. We were interested in longitudinal dynamics of mycobacterial growth in HCD water samples and analyzed data of a prospective mycobacterial surveillance of five LivaNova 3T HCDs. Nontuberculous mycobacteria were isolated in 319 (48.0%, 21 water samples grew more than one mycobacterial species) of a total of 665 water samples. The most frequently detected species were M. chimaera (N= 247/319, 77.4%), Mycobacterium gordonae (46/319, 14.4%) and Mycobacterium paragordonae (34/319, 10.7%). Detection rates increased longitudinally for any NTM (odds ratio (OR) per year in use: 1.60, 95% CI 1.17-2.24, P<0.001) and for M. chimaera (OR per year in use: 1.67, 95% CI 1.11-2.57, P<0.01)

    Anthropogenic disturbance as a driver of microspatial and microhabitat segregation of cytotypes of Centaurea stoebe and cytotype interactions in secondary contact zones

    Get PDF
    Background and Aims In a mixed-ploidy population, strong frequency-dependent mating will lead to the elimination of the less common cytotype, unless prezygotic barriers enhance assortative mating. However, such barriers favouring cytotype coexistence have only rarely been explored. Here, an assessment is made of the mechanisms involved in formation of mixed-ploidy populations and coexistence of diploid plants and their closely related allotetraploid derivates from the Centaurea stoebe complex (Asteraceae). Methods An investigation was made of microspatial and microhabitat distribution, life-history and fitness traits, flowering phenology, genetic relatedness of cytotypes and intercytotype gene flow (cpDNA and microsatellites) in six mixed-ploidy populations in Central Europe. Key Results Diploids and tetraploids were genetically differentiated, thus corroborating the secondary origin of contact zones. The cytotypes were spatially segregated at all sites studied, with tetraploids colonizing preferentially drier and open microhabitats created by human-induced disturbances. Conversely, they were rare in more natural microsites and microsites with denser vegetation despite their superior persistence ability (polycarpic life cycle). The seed set of tetraploid plants was strongly influenced by their frequency in mixed-ploidy populations. Triploid hybrids originated from bidirectional hybridizations were extremely rare and almost completely sterile, indicating a strong postzygotic barrier between cytotypes. Conclusions The findings suggest that tetraploids are later immigrants into already established diploid populations and that anthropogenic activities creating open niches favouring propagule introductions were the major factor shaping the non-random distribution and habitat segregation of cytotypes at fine spatial scale. Establishment and spread of tetraploids was further facilitated by their superior persistence through the perennial life cycle. The results highlight the importance of non-adaptive spatio-temporal processes in explaining microhabitat and microspatial segregation of cytotype

    Spacecraft Clocks and Relativity: Prospects for Future Satellite Missions

    No full text
    The successful miniaturization of extremely accurate atomic clocks invites prospects for satellite missions to perform precise timing experiments. This will allow effects predicted by general relativity to be detected in Earth's gravitational field. In this paper we introduce a convenient formalism for studying these effects, and compute the fractional timing differences generated by them for the orbit of a satellite capable of accurate time transfer to a terrestrial receiving station on Earth, as proposed by planned missions. We find that (1) Schwarzschild perturbations would be measurable through their effects both on the orbit and on the signal propagation, (2) frame-dragging of the orbit would be readily measurable, and (3) in optimistic scenarios, the spin-squared metric effects may be measurable for the first time ever. Our estimates suggest that a clock with a fractional timing inaccuracy of 101610^{-16} on a highly eccentric Earth orbit will measure all these effects, while for a low Earth circular orbit like that of the Atomic Clock Ensemble in Space Mission, detection will be more challenging

    News from z~6-10 galaxy candidates found behind gravitational lensing clusters

    Get PDF
    We summarise the current status of our project to identify and study z~6-10 galaxies thanks to strong gravitational lensing. Building on the detailed work from Richard et al. (2006), we present results from new follow-up observations (imaging) undertaken with ACS/HST and the Spitzer Space Telescope and compare our results with findings from the Hubble Ultra-Deep Field (UDF). These new observations are in agreement with the high-z nature for the vast majority of the candidates presented in Richard et al. (2006). We also discuss the properties of other optical dropout sources found in our searches and related objects (EROs, sub-mm galaxies,...) from other surveys

    Areas of high conservation value at risk by plant invaders in Georgia under climate change.

    Get PDF
    Invasive alien plants (IAP) are a threat to biodiversity worldwide. Understanding and anticipating invasions allow for more efficient management. In this regard, predicting potential invasion risks by IAPs is essential to support conservation planning into areas of high conservation value (AHCV) such as sites exhibiting exceptional botanical richness, assemblage of rare, and threatened and/or endemic plant species. Here, we identified AHCV in Georgia, a country showing high plant richness, and assessed the susceptibility of these areas to colonization by IAPs under present and future climatic conditions. We used actual protected areas and areas of high plant endemism (identified using occurrences of 114 Georgian endemic plant species) as proxies for AHCV. Then, we assessed present and future potential distribution of 27 IAPs using species distribution models under four climate change scenarios and stacked single-species potential distribution into a consensus map representing IAPs richness. We evaluated present and future invasion risks in AHCV using IAPs richness as a metric of susceptibility. We show that the actual protected areas cover only 9.4% of the areas of high plant endemism in Georgia. IAPs are presently located at lower elevations around the large urban centers and in western Georgia. We predict a shift of IAPs toward eastern Georgia and higher altitudes and an increased susceptibility of AHCV to IAPs under future climate change. Our study provides a good baseline for decision makers and stakeholders on where and how resources should be invested in the most efficient way to protect Georgia's high plant richness from IAPs
    corecore