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1  | INTRODUC TION

Plant invasions have become an increasing threat to agriculture, 
human health, and local biodiversity (Pimentel, Zuniga, & Morrison, 

2005; Richter et al., 2013). Because invasive alien plants (IAPs) have 
also become a major issue in protected areas (PAs; Foxcroft, Pyšek, 
Richardson, & Genovesi, 2013), there is an urgent need to imple-
ment conservation actions to limit the impact of IAPs in areas of high 
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Abstract
Invasive alien plants (IAP) are a threat to biodiversity worldwide. Understanding and 
anticipating invasions allow for more efficient management. In this regard, predicting 
potential invasion risks by IAPs is essential to support conservation planning into 
areas of high conservation value (AHCV) such as sites exhibiting exceptional botani-
cal richness, assemblage of rare, and threatened and/or endemic plant species. Here, 
we identified AHCV in Georgia, a country showing high plant richness, and assessed 
the	susceptibility	of	 these	areas	 to	colonization	by	 IAPs	under	present	and	 future	
climatic	conditions.	We	used	actual	protected	areas	and	areas	of	high	plant	ende-
mism (identified using occurrences of 114 Georgian endemic plant species) as proxies 
for AHCV. Then, we assessed present and future potential distribution of 27 IAPs 
using species distribution models under four climate change scenarios and stacked 
single- species potential distribution into a consensus map representing IAPs rich-
ness.	We	evaluated	present	and	future	invasion	risks	in	AHCV	using	IAPs	richness	as	
a	metric	of	susceptibility.	We	show	that	the	actual	protected	areas	cover	only	9.4%	of	
the areas of high plant endemism in Georgia. IAPs are presently located at lower el-
evations	around	the	large	urban	centers	and	in	western	Georgia.	We	predict	a	shift	of	
IAPs toward eastern Georgia and higher altitudes and an increased susceptibility of 
AHCV to IAPs under future climate change. Our study provides a good baseline for 
decision makers and stakeholders on where and how resources should be invested in 
the most efficient way to protect Georgia’s high plant richness from IAPs.
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conservation values (AHCV) such as sites exhibiting exceptional bo-
tanical richness, assemblage of rare, and threatened and/or endemic 
plant	species.	While	some	countries	have	already	established	proce-
dures	for	the	management	of	IAPs	(e.g.,	USA,	Switzerland;	Bohren,	
2006; Van Driesche, Blossey, Hoddle, Lyon, & Reardon, 2002), many 
other countries are still in the process of evaluating the threats and 
risks caused by IAPs.

Prevention of biological invasion at the earliest stage is more ef-
fective than attempts at management of well- established infestations 
(Leung et al., 2002). In this regard, statistical models such as species dis-
tribution	models	(SDMs;	Guisan	&	Thuiller,	2005)	may	represent	useful	
tools when implementing conservation actions at large and local scales 
(e.g., Descombes et al., 2016; Heinänen, Erola, & von Numers, 2012). 
SDMs	 relate	 environmental	 characteristics	 (e.g.,	 climatic	 and	 topo-
graphic variables) to the current geographical distribution of species in 
terms	of	presence/absence	to	fit	species’	realized	niches	and	predict	the	
distribution	of	suitable	habitats	in	space	and	time.	Therefore,	SDMs	can	
prove	useful	in	conservation	by	helping	managers	to	visualize	the	inva-
sive potential of IAPs (Guisan & Thuiller, 2005) in AHCV. For instance, 
Thalmann et al. (2014) estimated the current and future susceptibility 
of	PAs	to	9	IAPs	in	Georgia	with	SDMs.	However,	as	human-	mediated	
biological invasions are recent phenomena presenting an ongoing ex-
pansion, there is a need to include a broader number of potential IAPs 
(e.g., IAPs not occurring yet in the region of interest) for the prevention 
of biological invasion.

Situated	 in	 the	Caucasus	mountain	 ranges,	Georgia	 is	known	 for	
its high plant biodiversity and endemism. The flora of Georgia encom-
passes about 4,400 native species of vascular plants and 380 non- 
native	plant	species,	from	which	16	are	classified	as	invasive	(Kikodze	
et	al.,	2010).	Approximately	21%	of	the	Georgian	flora	 is	endemic	to	
the Caucasus region, 278 of them being strictly endemic to Georgia 
(Gagnidze	et	al.,	2002;	Solomon	et	al.,	2014).	This	high	biodiversity	is	
recognized	by	the	national	protection	of	43	areas	in	Georgia,	which	fol-
low the IUCN guidelines (Dudley, 2008) and are general indicators of 
high	biodiversity.	While	PAs	are	in	general	indicators	of	high	biodiver-
sity, those areas are not necessarily encompassing high plant endemism 
or endangered species (i.e., critically endangered, endangered, and vul-
nerable following IUCN guidelines; Dudley, 2008), as it was shown for 
Armenia (Fayvush, Tamanyan, Kalashyan, & Vitek, 2013). Fayvush et al. 

(2013) showed that the protected natural areas of Armenia are missing 
important hotspots of plant endemism and even fail to preserve ade-
quately half of the plants under categories Critically endangered (CR), 
endangered (EN), and vulnerable (VU) by IUCN classification. Countries 
with high biodiversity and a high number of strictly endemic and sub-
endemic	plant	species,	such	as	Georgia	(Gagnidze	et	al.,	2002;	Solomon	
et al., 2014), have an international responsibility to protect them ade-
quately (see Convention on Biological Diversity: https://www.cbd.int/
convention/). Due to the high conservation value of endemic species 
and their susceptibility to IAPs and climate changes (e.g., Li et al., 2013; 
Barrett & Yates, 2015; Urban, 2015; Zhang et al., 2017), areas of high 
plant endemism should be considered for the assessment of future im-
pacts on endemic plant species in AHCV. In addition, reconciling poten-
tial inconsistencies between the distribution of PAs and areas of high 
endemic/endangered species richness would lead to a better predic-
tion	of	AHCV	and	conflict	zones	between	IAPs	and	AHCV.

In this study, we identified AHCV in Georgia by combining the 
delimitation of the PAs with areas of high plant endemism. Here, 
we consider AHCV as regions exhibiting exceptional botanical spe-
cies richness and/or particular assemblage of rare, and threatened 
and/or	endemic	plant	species.	We	then	estimated	the	susceptibility	
of AHCV to invasion by 27 IAPs, including IAPs that still have not 
invaded Georgia and have the potential to become invasive, using 
SDMs	for	present	and	future	climate	conditions.	More	specifically,	
we investigate the following questions: (1) Are Georgia’s Protected 
Areas	 representative	 of	 areas	 of	 high	 plant	 endemism?	 (2)	Which	
areas and AHCV in Georgia are more susceptible to IAPs and how 
will this susceptibility change under future climate scenarios?

2  | MATERIAL AND METHODS

2.1 | Study area

The study area corresponds to the boundary of the Georgian 
country situated in the Caucasus region and covers an area of ap-
proximately	69,700	km2 (Figure 1). Georgia is situated between two 
important mountain ranges, the Greater Caucasus range (north part 
culminating	at	5,500	m)	and	the	Lesser	Caucasus	range	(South	part).	
This particular topography protects Georgia from colder air masses 

F IGURE  1 Map of the study area 
representing the Georgian country with 
its elevation range (meter). The colored 
scale represents the elevation gradient. 
The protected areas are shown as gray- 
shaded frames and areas of high plant 
endemism as black- rimmed frames

https://www.cbd.int/convention/
https://www.cbd.int/convention/
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from the north and partially from the hot and dry air masses from the 
south	(Lydolph,	1977).	Georgia	displays	diverse	climate	and	vegeta-
tion types, ranging from subtropical in the western part, to continen-
tal in the eastern part, and temperate at high elevation.

2.2 | Areas of high conservation value

We	 identified	AHCV	based	on	Georgia’s	 Protected	Areas	 and	 the	
areas of high plant endemism. Protected areas in Georgia follow 
the	 IUCN	 guidelines	 with	 categories	 ranging	 from	 “Strict	 Nature	
Reserve” (Category Ia) to “Protected Area with sustainable use of 
natural	resources”	(Category	VI;	Dudley,	2008).	We	excluded	natural	
monuments	 (i.e.,	Category	 III)	because	of	their	small	size	and	their	
priority on protecting natural features rather than the ecosystem 
(Dudley,	2008).	The	total	surface	of	the	39	selected	PAs	represents	
approximately	7%	of	Georgia’s	total	area.

Out of 278 endemic species occurring in Georgia, we retained 
114 plant species for which we found occurrence data in Georgia 
(n	=	765,	Figure	S1).	From	the	selected	endemic	species,	88	species	
are strictly endemic to Georgia and 26 species are Caucasian endem-
ics	(Table	S1	and	S2).	Occurrence	data	were	collected	from	the	on-
line database Global Biodiversity Information Facility (GBIF; http://
www.gbif.org/) and from rich herbarium collections of the National 
Herbarium of Georgia (TBI), the herbarium of National Museum 
of	 Georgia	 (TGM),	 the	 Ivane	 Javakhishvili	 Tbilisi	 State	 University	
Herbarium, and the Batumi Botanical Garden (BAT) In addition, all 
volumes of the second edition of Flora of Georgia were consulted 
(except the large family Poaceae that is still not covered in the al-
ready published sources), which include information on the localities 
where the species was collected, frequently on the landmark level 
but	always	indicating	the	nearest	settlement/urban	areas.	We	veri-
fied that our subset of 114 species was a phylogenetically nonbiased 
sample of all the endemics. To do so, we constructed the phyloge-
netic tree of all Georgian endemics (n	=	279)	and	the	selected	geo-
referenced endemics (n = 114) with the online program Phylomatic 
(Webb	&	Donoghue,	 2005)	 and	 calculated	 the	 branch	 lengths	 for	
both	 trees	 with	 the	 program	 Phylocom	 Version	 4.2	 (Webb	 et	al.,	
2008).	We	then	calculated	the	mean	pairwise	distance	(mpd)	of	the	
selected 114 endemic plants with the “picante” package (Blomberg, 
Garland & Ives, 2003; Kembel et al., 2010)  in R (R Development 
Core Team, 2014, Version 3.1.2) and compared it to a null distribu-
tion generated from 1,000 random sampling of 114 species across 
the	 tips	 of	 the	 phylogenetic	 tree.	We	 checked	 whether	 the	 mpd	
value is similar to random samples of the total species pool with a 
two- tailed test. The mpd value of the 114 georeferenced endemics 
showed no significant difference to the mpd values of the 114 ran-
domly sampled endemics (two- tailed test: p- value: .372), indicating 
that our subset of 114 species is a phylogenetically nonbiased sam-
ple of all the Georgian endemics.

From endemic occurrences, we generated a map of endemic 
species richness per pixel at a spatial resolution of 0.0083° (~1 km), 
using a focal moving window of 0.5° across the Georgian landscape 
and using a smoothing procedure with the “focal” function of the 

R package “raster” (Hijmans & Van Etten, 2014) as the mean of the 
values	in	a	0.083°	neighborhood	(i.e.,	10	pixels	radius).	We	consid-
ered pixels with more than 15 endemics as areas of high plant en-
demism and buffered this area by 0.5° in order to take into account 
the variability introduced by the focal window in the mapping pro-
cedure. The threshold of 15 species was chosen to insure that the 
selected	areas	of	high	plant	endemism	cover	approximately	20%	of	
Georgia’s	 surface	 (see	Figure	S2	 for	 a	 cover	 representing	approxi-
mately	10%,	5%,	and	1%	of	Georgia).	We	considered	this	area	as	area	
of	 high	 plant	 endemism,	 representing	 20.8%	 of	 Georgia’s	 surface	
(Figure 1). According to the worldbank database on protected ter-
restrial areas (https://data.worldbank.org/indicator/), which ranks 
countries according to their total surface protected, Georgia is only 
ranked	139	on	209	countries	(i.e.,	8.4%	of	its	surface	protected).	This	
very low amount of PAs contrasts with the 71 countries having more 
than	20%	of	their	surface	protected,	as	well	as	with	the	neighbor-
ing country of Armenia situated in the Lesser Caucasus mountain 
range	with	24.8%	of	its	surface	protected.	Considering	an	endemic	
area	covering	approximately	20%	of	the	Georgian	country	ensures	
to reach similar surfaces for AHCV compared to other worldwide 
or neighboring countries. As observations of endemics are rare, we 
used the previous focal window approach, buffers and threshold to 
lower the impact of the low data availability and to obtain a regional 
estimate of the endemic richness. Using a smaller focal window, 
buffers and thresholds would lead to increase the chance of missing 
areas of high plant endemism due to lower data availability at a local 
scale. The selected endemic areas represent the Georgian potential 
areas of high plant endemism based on georeferenced observations. 
We	are	not	aware	of	any	published	sources	on	areas	of	concentra-
tion of endemic species, which would allow to validate our selected 
areas of high plant endemism or to assess if some them are missing 
in some areas of Georgia. Finally, we defined AHCV in Georgia as 
the combination of areas of high plant endemism and Georgia’s pro-
tected	areas,	together	representing	27.8%	of	the	Georgian	surface	
(Figure 1).

2.3 | Invasive alien plants

The non- native flora of Georgia comprises 380 species (excluding 
cultivated species which are not, or only rarely found in the natu-
ral	 environment),	 representing	 8.9%	 of	 the	 total	 flora	 of	 Georgia,	
of which 16 plant species are actually considered as major threat 
and	classified	as	IAPs	(Kikodze	et	al.,	2010;	Richardson	et	al.,	2000).	
We	 selected	27	 IAPs	 (including	all	 16	 recognized	 IAPs	 in	Georgia)	
presenting more than 100 occurrences worldwide and showing high 
potential to become invasive based on their status in other European 
countries	with	 similar	 climatic	 conditions	 (see	 Table	 S3	 for	 details	
on the selected IAPs). Among the selected IAPs, the most noxious 
ones are Ambrosia artemisiifolia, Robinia pseudoacacia, and Ailanthus 
altissima (see Thalmann et al., 2014). Occurrence data (N = 374,232) 
were	collected	from	several	Georgian	herbaria	(i.e.,	Georgian	State	
Museum,	Tbilisi	State	University	Herbarium,	and	Batumi	Botanical	
Herbarium), from occurrence points collected in the field with a 

http://www.gbif.org/
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GPS	device	(Garmin	GPSMAP	64),	from	a	previous	study	(Thalmann	
et al., 2014) and from the online database GBIF (http://www.gbif.
org/;	see	Figure	S3).	GBIF	data	are	known	to	be	subject	 to	spatial	
bias and accuracy issues, especially in species identification, tax-
onomy,	or	GPS	precision	(e.g.,	Beck	et	al.,	2014;	Meyer	et	al.,	2016)	
. Thus, all IAPs used in this study were checked for synonyms in the 
data collection, missing or clearly false locality coordinates were 
removed from the analyses, and our modeling procedure includes 
a disaggregation strategy reducing the potential spatial bias (Beck 
et	al.,	2014).	Because	28%	of	the	downloaded	GBIF	data	contained	
no information about the precision of the observation, we decided 
to	keep	all	the	observations.	So	far,	IAP	occurrences	in	Georgia	are	
mainly found in the Adjara region in southwestern Georgia and in the 
Samegrelo	region	in	western	Georgia	and	around	the	cities	of	Kutaisi	
and	Tbilisi	(see	Figure	S4).	However,	those	distributions	may	be	the	
result of sampling bias close to cities and along main roads.

2.4 | Environmental predictor variables

To model the potential distribution of IAPs, we used six climatic 
variables known to have a strong influence on plant physiological 
performance and survival and used by a previous study on IAPs 
in	 Georgia	 (Bartlein	 et	al.,	 1986;	 Thalmann	 et	al.,	 2014).	We	 used	
maximal temperature of the warmest month (tmax), minimal tem-
perature of the coldest month (tmin), temperature annual range 
(tar), mean temperature of the wettest month (twetq), precipita-
tion of wettest month (pwet), and precipitation of the driest month 
(pdry).	Environmental	variables	were	obtained	from	the	WorldClim	
database (Hijmans et al., 2005) with a spatial resolution of 0.0083° 
(~1	km).	We	extracted	the	values	of	these	climatic	predictors	for	all	
IAPs observations worldwide (n = 374,232) and checked for mul-
ticollinearity with pairwise correlations in order to avoid spurious 
model calibrations (Guisan & Thuiller, 2005). It is common practice 
(e.g.,	 Aguirre-	Gutiérrez	 et	al.,	 2013)	 to	 retain	 only	 predictors	with	
pairwise correlation < |.7|. As the Pearson correlations were globally 
lower than this threshold except for tar and tmin (r	=	−.74),	we	kept	
all predictor variables as used in the study of Thalmann et al. (2014).

2.5 | Species distribution models

To determine the potential distribution of the 27 selected IAPs in 
Georgia,	we	built	SDMs	by	relating	occurrence	observations	to	the	
six environmental variables using custom code in R. Models have the 
tendency to vary among the different statistical techniques (Elith 
et al., 2006; Thuiller et al., 2004). Thus, we ran an Ensemble approach 
(Araújo & New, 2007) by averaging the results of five commonly used 
statistical	techniques:	generalized	linear	model	(McCullagh	&	Nelder,	
1989),	gradient	boosting	model	 (Friedman,	2001;	Ridgeway,	1999),	
general additive models (Guisan & Zimmermann, 2000), Random 
Forest (Breiman, 2001), and maximum entropy (Phillips et al., 2006; 
Elith et al., 2011). Models were calibrated with worldwide occur-
rences (i.e., native and invaded ranges) and projected in Georgia at 
a spatial resolution of 0.0083° (~1 km2).	We	chose	to	include	all	the	

occurrence data available for the native and invaded range in order 
to account for possible niche shifts in the invaded area (even if they 
are rare among species; see Petitpierre et al., 2012) and to obtain 
more accurate models for predicting the potential distribution of the 
species	in	the	invaded	range	(Beaumont	et	al.,	2009;	Broennimann	
& Guisan, 2008).

To calibrate the models, we firstly avoided spatial autocorrela-
tion in the presences data using the disaggregation tool provided 
by the “ecospat” package (Broennimann et al., 2017) in R by setting 
a	minimal	distance	of	0.083°	between	presences.	We	then	selected	
randomly a set of pseudo- absences (also known as background data; 
Wisz	&	Guisan,	2009).	Pseudo-	absences	were	drawn	within	the	bi-
omes occupied by the species. For this task, we used 14 biomes from 
the	 Terrestrial	 Ecoregions	 of	 the	World	 (Olson	 et	al.,	 2001).	With	
this approach, we ensure that pseudo- absences are drawn only from 
regions where the species occurs and that have been accessible as 
the	species	speciated	(Barve	et	al.,	2011;	Thalmann	et	al.,	2014)	.	We	
selected randomly the same amount of pseudo- absences than pres-
ences, gave equal weights to presences and pseudo- absences in the 
calibration of the model, and averaged several runs (Barbet- Massin 
et	al.,	2012).	We	ran	10	iterations	of	models,	avoiding	spatial	auto-
correlation among presences, and sampling each time the pseudo- 
absences within the biomes where the species occurs.

To evaluate the capacity of the models to correctly predict the 
presence and absence of the species at the global scale, we used 
the previously selected set of presences and pseudo- absences for 
each	iteration.	Models	were	calibrated	on	a	random	sample	of	70%	
of the presences and pseudo- absences data, and evaluated on the 
remaining	30%.	We	used	the	area	under	the	ROC	plot	curve	(AUC;	
Fielding	&	Bell,	1997)	and	the	True	Skill	Statistics	(TSS;	Allouche	et	
al., 2006), which both evaluate the ability of the model to discrimi-
nate presences from absences. AUC varies between 0 (counter pre-
diction) and 1 (perfect prediction), 0.5 meaning random predictions. 
TSS	is	scaled	between	−1	and	1,	0	meaning	random	predictions.	As	
biological invasions are ongoing processes, the selected absences 
may not be representative of true absences and may thus bias the 
evaluation	 (Václavík	&	Meentemeyer,	 2009).	We	 thus	 added	one	
presence- only evaluator: the sensitivity calculated on predictions 
binarised	with	the	threshold	providing	the	best	TSS.	The	sensitivity	
is a threshold- dependent evaluator corresponding to the rate of 
presences correctly classified by the model. Models are considered 
to have reliable prediction performances with AUC values > 0.70 
(i.e.,	 excellent	 AUC 	>	 0.90;	 good	 0.80	 < 	AUC	 <	 0.90;	 fair	
0.70	 <	 AUC	 <	 0.80;	poor	AUC	 <	 0.70;	see	Swets,	1988)	and	TSS	
values	>	0.40	 (i.e.,	excellent	TSS	 >	 0.75;	good	0.40	 <	 TSS	 <	 0.75;	
poor	 TSS	 <	 0.40;	 see	 Landis	 &	 Koch,	 1977).	 Finally,	 evaluators	
were averaged for all models and replicates (10 iterations).

In addition, we evaluated the predictive performance of the 
models in Georgia by calibrating the models with all occurrences 
and pseudo- absences present outside Georgia (i.e., presences and 
pseudo- absences inside Georgia were removed from the data) 
and by evaluating the models on presences and random pseudo- 
absences selected in Georgia by following the same procedure as 

http://www.gbif.org/
http://www.gbif.org/
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above for pseudo- absences selection. Predictive performance of 
the	models	 in	Georgia	was	only	assessed	 for	19	 IAPs	species	 that	
presented more than 10 occurrences after avoiding spatial autocor-
relation. Evaluators were averaged for all models and replicates (10 
iterations).

Finally, we averaged the 10 projections of the five algorithms 
together in a single map and binarised it using a threshold max-
imizing	 the	 TSS.	 This	 threshold	 was	 obtained	 by	 averaging	 the	
threshold estimated for each algorithm and iterations with the 
“optimal.thresholds” function from the “PresenceAbsence” pack-
age (Freeman & Moisen, 2008) in R. All binarised maps were then 
combined into one consensus map representing the species rich-
ness of IAPs, used in this study as a metric of invasion suscep-
tibility	 (Figure	2a).	We	 finally	 summed	 species	mean	 predictions	
of habitat suitability (mean of the five different algorithms) of all 
IAPs together in a single map representing a global invasion risk 
and found a strong and significant correlation between this map 
and	the	richness	map	inferred	from	binary	conversion	(Spearman	
correlation: r	>	.97,	p-	value	<	.001;	see	Figures	S5	and	S6).	For	the	
following analyses, we only used species richness of IAPs as a met-
ric of invasion susceptibility.

The choice of the selected pseudo- absences sampling strat-
egy	 can	 profoundly	 affect	 SDM	 predictions	 (e.g.,	 Gu	 &	 Swihart,	
2004), which may vary between statistical models (Barbet- Massin 
et al., 2012). To assess the reliability of our results, we compared 
our IAPs richness map to richness maps obtained with two differ-
ent pseudo- absences sampling strategies: (1) a larger number of 

randomly selected pseudo- absences (here 5k more than number 
of occurrences) with equal weighting for presences and pseudo- 
absences as recommended by Barbet- Massin et al. (2012) and (2) a 
biased background using a target- group sampling approach where 
a same number of pseudo- absences and occurrences are randomly 
selected from the total IAPs occurrences (see Merow et al., 2013; 
Phillips	 et	al.,	 2009).	 All	 pseudo-	absences	 were	 selected	 into	 the	
biomes where the species occurs. Overall, we found a very strong 
correlation between our initial IAPs richness map and the richness 
maps	derived	 from	higher	 number	of	 pseudo-	absences	 (Spearman	
correlation: r	=	.98,	p- value < .001) and from target- group pseudo- 
absences	 selection	 (Spearman	 correlation:	 r	=	.91,	 p- value < .001), 
which supports and gives confidence to our methodology.

2.6 | Climate change scenarios

To model the future distribution of invasive plant species, we used 
two different climate projection scenarios for 2050 (i.e., for the 
2041–2060 time period) with two different global climate models 
(GCMs).	We	used	two	representative	concentration	pathway	scenar-
ios: RCP 4.5 (moderate, mean global warming increase of 1.4°C) and 
RCP	8.5	(more	severe,	mean	global	warming	increase	of	2.0°C).	We	
used the GCMs of the Fifth Assessment IPCC report (AR5, 2014); 
HadGEM2-	AO	 (Martin	 et	al.,	 2011)	 and	 IPSL-	CM5A-	LR	 (Dufresne	
et	al.,	 2013).	 All	 variables	 were	 obtained	 from	 the	WorldClim	 da-
tabase (Hijmans et al., 2005) with a spatial resolution of 0.0083° 
(~1 km2).	We	projected	all	models	for	the	invasive	plant	species	with	

F IGURE  2  Invasive alien plant species 
richness in Georgia for the (a) present 
climate and (b) future climate for the year 
2050	(RCP	8.5	IPSL-	CM5A-	LR	climate	
change scenario). The colored scale 
represents the species richness. Each 
pixel represents the invasive alien plant 
richness on this site location (resolution: 
1 km2). The protected areas are shown 
as gray- shaded frames and areas of high 
plant endemism as black- rimmed frames
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the two different scenarios assuming unlimited dispersal of species, 
which has been shown to be a close approximation to using dispersal 
kernels	in	mountains	(Engler	et	al.,	2009).

2.7 | Species richness of IAPs as a metric for 
invasion risk

We	evaluated	present	and	future	invasion	risks	by	IAPs	for	the	entire	
territory of Georgia and for AHCV using predicted IAP richness as a 
metric of invasion susceptibility and by comparing present to future 
changes in four richness classes with the same ranges (number of 
IAPs	predicted:	0,	i.e.,	absent;	1–9,	i.e.,	low;	10–18,	i.e.,	medium;	and	
19–26,	 i.e.	high).	Then,	 for	each	species	 in	Georgia	and	AHCV,	we	
calculated a potential range filling index (PRF) and an actual range 
filling index (ARF) following a procedure modified from Descombes 
et al. (2016). PRF is defined as the percent of area predicted to be 
suitable in the total area available (predicted area of the species in 
Georgia/AHCV divided by the total area of Georgia/AHCV). In order 
to estimate the actual range occupied by the species in Georgia/
AHCV, we buffered current occurrences of IAPs by 10 km. ARF is 
defined as the percent of area actually occupied by the species in 
the predicted potential distribution of the species in Georgia/AHCV 
(actual estimated area of the species in Georgia/AHCV divided by 
the predicted area of the species in Georgia/AHCV). Note that ARF 
represents the minimal known distribution of the IAPs and that it 
could be underestimated due to sampling issues.

3  | RESULTS

3.1 | AHCV in Georgia

Our analysis showed that large parts of the areas of high plant end-
emism are located in central Georgia, north of Kutaisi in the regions 
of	Racha,	Imereti,	and	Samtskhe-	Javakheti	and	in	the	northwestern	
part	in	Abkhazia	(Figure	1).	We	found	that	only	9.4%	of	areas	of	high	
plant endemism are inside PAs, showing a clear lack of protection for 
endemic plant species in Georgia (Figure 1).

3.2 | Models performance

Distribution models calibrated and evaluated at the global scale 
showed reliable predictions for the 27 selected IAPs, with good 
to	 excellent	 AUC	 values	 (0.849	≤	AUC	≤	0.981),	 good	 to	 excel-
lent	 TSS	 values	 (0.572	≤	TSS	≤	0.902),	 and	 good	 sensitivity	 val-
ues	 (0.776	≤	sensitivity	≤	0.977;	 Table	 S4).	 Overall,	 evaluations	 of	
distribution models calibrated at the global scale and evaluated in 
Georgia	for	19	IAPs	showed	reliable	predictions	with	fair	to	excel-
lent	AUC	values	(0.704	≤	AUC	≤	0.941),	good	to	excellent	TSS	values	
(0.497	≤	TSS	≤	0.849),	 and	 good	 sensitivity	 values	 (0.815	≤	sen-
sitivity	≤	0.982	 (Table	 S5;	 Figure	 S7),	 except	 for	 A. artemisiifolia, 
Chenopodium album, Conyza canadensis, Elsholtzia ciliata, Galinsoga 
parviflora, R. pseudoacacia, and Solidago canadensis	 (Table	 S5). 
Differences between global and Georgian evaluations for AUC and 

TSS	evaluators	indicate	that	A. artemisiifolia, C. album, C. canadensis, 
E. ciliata, G. parviflora, R. pseudoacacia, and S. canadensis are prob-
ably still not at equilibrium in Georgia, resulting in weak predictive 
abilities when models are evaluated with Georgian occurrences only 
(Table	 S5).	 However,	 the	 evaluation	 of	 distribution	 models	 when	
using a presence- only evaluator (i.e., sensitivity) shows that actual 
occurrences in Georgia are well predicted by the distribution models, 
with	sensitivity	values	>=	0.775	for	most	of	the	IAPs	(Table	S5;	Figure	
S7),	except	for	E. ciliata (mean ± SD;	sensitivity	=	0.597	±	0.212)	and	
G. parviflora (sensitivity = 0.636 ± 0.170).

3.3 | Current and future distribution of IAPs 
in Georgia

For	 the	 current	 climate,	 the	 SDMs	predicted	 a	 high	 suitability	 for	
almost all selected 27 IAPs along the coastline in western Georgia 
and in central Georgia at lower altitudes (Figure 2a). Another area of 
high suitability for IAPs is in eastern Georgia north of Tbilisi, with up 
to	15	IAPs	(Figure	2a).	Approximately	11.4%	of	total	Georgian	area	
is not suitable for the IAPs investigated in this study and is mostly 
located at high elevation (Table 1, Figure 2a). The area suitable also 
decreased with the number of IAPs (Table 1). The potential distri-
bution of IAPs in Georgia (i.e., PRF) varies highly between species 
(Table	2),	ranging	from	75%	of	Georgia’	surface	(A. artemisiifolia) to 
0%	(Hydrocotyle vulgaris; Table 2). However, the ARF of IAPs in the 
predicted potential distribution (i.e., PRF) is overall low, ranging from 
31.6%	(Ulex europaeus)	to	0%	(H. vulgaris), indicating that most suit-
able areas for IAPs are not invaded yet (Table 2).

Under future climate projections (i.e., year 2050), the suitabil-
ity ranges for IAPs will shift toward higher altitudes in the higher 
and lesser Caucasus Mountains and toward the East of Georgia 
(Figures	2b	and	S8).	Under	the	four	climate	change	models,	the	areas	
with no suitability for IAPs will decrease compared to the present 
state	 (i.e.,	 <7.6%	 of	 Georgia’s	 surface;	 Table	1	 and	 S6,	 Figures	2b	
and	 S8),	 resulting	 from	 an	 increase	 in	 suitability	 at	 high	 elevation	
sites. Overall, future climate projections show that there will be a 
global	decrease	in	suitability	for	1–9	and	19–26	IAPs	(Tables	1	and	
S6,	Figures	2b	and	S8)	and	suitability	areas	for	10–18	IAPs	will	dras-
tically	 increase	 from	 29%	 under	 current	 climate	 conditions	 up	 to	
53.2%	(Tables	1	and	S6,	Figures	2b	and	S8).

3.4 | AHCVs at risk by IAPs

For the current climate, the AHCV most at risk due to predicted 
high suitability of IAPs is in central Georgia north of Kutaisi, in 
northwestern	Georgia	 in	Abkhazia,	 in	western	Georgia	along	the	
coastline	 in	 Samegrelo,	 and	 in	 southwestern	 Georgia	 in	 Adjara	
(Figure 2a). The areas with no suitability for IAPs in AHCV rep-
resent	 9.9%	 of	 total	 AHCV	 area,	while	 areas	with	 suitability	 for	
1–9,	10–18,	and	19–26	IAPs	represent	36.2%,	26.6%,	and	27.3%,	
respectively (Table 1). The AHCV that is not or only barely af-
fected by IAPs is the PAs in the far south in the lesser Caucasus 
Mountains and in the northeast in the higher Caucasus Mountains 
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(Figure 2a). The potential distribution of IAPs in AHCV varies 
highly	 between	 species	 (Table	2),	 ranging	 from	 76.4%	 of	 AHCV	
surface (E. ciliata)	to	0.1%	(H. vulgaris; Table 2). However, the ARF 
in	AHCV	is	globally	low,	ranging	from	41.7%	(U. europaeus)	to	0.1%	
(H. vulgaris), indicating that most suitable areas for IAPs are not 
invaded yet (Table 2).

Under the four future climate change models, the areas suitable 
for IAPs within AHCV will increase compared to the present state 
(i.e.,	<5.7%	of	AHCV	surface;	Tables	1	and	S6,	Figures	2b	and	S8).	
Overall, future climate projections in AHCV show that there will 
be	 a	 global	 decrease	 in	 suitability	 for	 1–9	 IAPs	 (Tables	1	 and	 S6,	
Figures	2b	and	S8),	 suitability	areas	 for	10–18	 IAPs	will	drastically	
increase	from	26.6%	under	current	climate	conditions	up	to	59.3%	
(Tables	1	and	S6,	Figures	2b	and	S8),	and	suitability	areas	for	19–26	
IAPs will increase or decrease depending on the scenario (Tables 1 
and	S6,	Figures	2b	and	S8).

Protected Areas will be slightly less affected by a predicted high 
suitability of IAPs compared to the total Georgia or AHCV (Table 1). 
Only the southern- most PAs will stay unaffected and have a lower 
invasion susceptibility in the future. All other PAs will face a higher 
risk with increasing areas of high suitability for IAPs, notably in 
higher elevations. Interestingly, actual PAs seems to be located in 
areas	with	low	suitability	for	IAPs	(i.e.,	21.6%	coverage	with	no	suit-
ability for IAPs), while, in contrast, areas of high plant endemism are 
located on areas with very high IAPs richness (Table 1).

4  | DISCUSSION

For the first time, we used an approach which includes both PAs 
and areas of high plant endemism to identify AHCV at the scale 
of	a	country.	We	found	in	the	case	of	Georgia	that	PAs	only	cover	
a	 small	 portion	of	 the	 areas	of	high	plant	 endemism	 (i.e.,	 9.4%).	
We	show	that	areas	of	high	plant	endemism	are	located	in	areas	
with higher suitability for IAPs compared to PAs, subjecting en-
demic plant species to high threats from IAPs. As areas of high 
plant endemism are located outside official Georgian Protected 
Areas, they have a lower chance to be included in IAP manage-
ment programs.

4.1 | Areas of high conservation value

Our finding reveals that using PAs as the only proxy for delimit-
ing AHCV (e.g., Thalmann et al., 2014) may be of limited relevance. 
Protected	Areas	represent	only	7%	of	the	surface	of	Georgia,	which	
translate the fact that resources allocated to conservation are lim-
ited to only a small fraction of areas with conservation value in order 
to	maximize	biodiversity	protection	in	complementarity	with	other	
PAs in the network of PAs (Foxcroft et al., 2013). Using data on en-
demic species allows a more inclusive coverage of AHCV, with a 
surface	reaching	27.4%	of	the	surface	of	Georgia.	Overall,	we	show	
that endemics are in large part distributed outside of PAs and are 
therefore at risk of competition by IAPs, but also by nonsustain-
able	land	use	such	as	overgrazing,	farming,	or	urbanization	(Reidsma	
et	al.,	2006;	Seto	et	al.,	2012).	A	similar	pattern	was	also	found	 in	
Armenia (Fayvush et al., 2013), where protected natural areas are 
missing important hotspots of plant endemism and fail to preserve 
adequately half of the threatened plants according to the IUCN clas-
sification (i.e., critically endangered, endangered, and vulnerable). 
This is a strong signal that the already existing PAs in Georgia are not 
sufficient to protect Georgia’s rich biodiversity.

The paucity of data on rare and endemic species is a common 
problem in conservation biology (Engler et al., 2004). Our data 
make no exception as it contains enough and sufficiently precise 
data	for	only	41%	of	the	total	number	of	Georgian	endemic	species.	
However, our subset of species is a phylogenetically nonbiased sam-
ple representative of Georgian endemic plant species. In addition, 
the area covered by our AHCV is more or less representative of bio-
diversity	and	endemic-	rich	areas	in	Georgia,	especially	 in	Abkhazia	
and Ajara (in the northwesternmost and southwesternmost parts, 
respectively) supporting Tertiary flora and being known as refugia of 
remote	 geological	 epochs	 (e.g.,	 Kolakowsky,	 1961;	Nakhutsrishvili,	
2012). However, more efforts should be invested into recording en-
demic species to better define endemic- rich areas in Georgia (i.e., 
especially in areas poorly investigated) using scientific- based sam-
pling strategies (e.g., random stratified sampling). Note that while 
reviewing the list of Georgian endemic plant species, we found out 
that 11 of them were not endemic, but were synonyms to species 
ranging	beyond	the	Caucasus	region.	We	thus	strongly	recommend	

TABLE  1 Threat potential of the 27 invasive alien plants (IAPs) for the present and the future in Georgia, potential area of high plant 
endemism (AHPE), protected areas (PAs), and area of high conservation values (AHCV; i.e., AHPE and PAs). Values correspond to the percent 
of	predicted	surface	occupied	by	the	different	ranges	of	invasive	species	richness	(0,	1–9,	10–18,	and	19–26	species).	Future	predictions	are	
for	the	RCP	8.5	IPSL-	CM5A-	LR	climate	change	scenario	for	the	year	2050	(see	Table	S6	for	the	results	of	the	other	future	climate	change	
scenarios)

IAPs richness

Georgia (%) AHPE (%) PAs (%) AHCV (%)

Current Future Current Future Current Future Current Future

0 11.4 2.2 4.4 0.1 21.6 6.1 9.9 2.0

1–9 39.5 33.6 33.9 10.4 44.3 36.9 36.2 18.4

10–18 29.0 53.2 28.9 53.6 20.8 39.6 26.6 49.4

19–26 20.1 11.0 32.8 36.0 13.3 17.4 27.3 30.3
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to critically review and update the current list of Georgian endemic 
plant species and to put efforts into georeferencing the remaining 
endemics in order to better define endemic- rich areas in Georgia.

4.2 | Current and future AHCV at high risk by IAPs

Presently, the highest concentration of IAPs is in the Adjara region in 
southwest Georgia, around Tbilisi area, and in central Georgia around 
Kutaisi	(Figure	S4).	The	distribution	of	IAPs	is	mostly	associated	with	
human activity around urban areas (Hulme, 2003). In particular, high 

soil disturbance and increased traffic around big agglomerations 
may have further facilitated plant invasions (Catford et al., 2012), as 
well as garden escapes from botanical gardens (Hulme, 2015). Our 
results also demonstrate that all IAPs have largely not yet reached all 
their potential distribution in Georgia and AHCV (see PRF and ARF 
values; Table 2), testifying for the recent and ongoing expansion of 
biological invasions in Georgia. The dispersal of these species should 
be limited by implementing conservation actions, particularly to limit 
their dispersal in AHCV.

A rather alarming finding of our study is that suitable areas for 
IAPs will increase with warmer climate, notably toward higher al-
titudes in the greater and lesser Caucasus. Under future climate 
change scenarios, IAPs will disperse to higher elevation on newly 
available suitable areas, leading to a decrease in low IAPs richness 
areas at high elevation. On the other hand, we also observe a de-
crease in suitability to IAPs at low elevation (Figure 2), which means 
that climate change will also decrease the suitability of some IAPs 
in the western part of Georgia (Figure 2). However, the species’ 
range response to climate change along elevation gradients is not 
expected to occur simultaneously with climate change, but with a 
species- specific temporal lag explained by variation in physiological 
and demographic responses, altered biotic interactions and aspects 
of the physical environment (Alexander et al., 2018). Although plant 
communities at higher altitudes are expected to be at lower risk of 
invasion due to lower propagule pressure and stressful abiotic condi-
tions (Petitpierre et al., 2016; Zefferman et al., 2015), with increased 
global connectivity and changing climate, the risk of plant invasions 
at	high	altitudes	is	also	predicted	to	increase	(Pauchard	et	al.,	2009).	
Anticipating which areas are predicted to be at high risk of inva-
sion should greatly increase the efficiency of prevention programs 
against IAPs (Pauchard et al., 2015).

4.3 | From predictions of climatic suitability to local 
impact assessments

Our approach predicts the potential suitability for IAPs but cannot 
consider the true in situ impact of the IAPs on their environment. 
Our predictions of potential suitability could be improved using 
finer	resolution	SDMs	(e.g.,	Descombes	et	al.,	2016;	Heinänen	et	al.,	
2012;	Razgour	et	al.,	2011)	or	by	exploiting	available	knowledge	at	
the species level. In a recent study, a scoring system for invasive spe-
cies, based on their environmental and socio- economic impact, was 
developed (Kumschick et al., 2015). The risk posed by these spe-
cies could be refined using this scoring system. For example, for the 
same predicted suitability value, we can expect R. pseudoacacia (i.e., 
with a global environmental and socio- economic impact score of 20) 
to have a 10- fold higher in situ impact than Phytolacca Americana 
(global impact score of 2). In addition, trait- based approaches could 
be used for assessing and mapping potential niche overlap between 
native and exotic species (Elleouet et al., 2014). However, those 
analyses need broad data on species morphological traits which 
are rare for our selected endemic plant species. Furthermore, our 
models, as every static distribution models based on presence- only 

TABLE  2 Potential and actual range filling of the 27 invasive 
alien plants (IAPs) for the present in Georgia and area of high 
conservation values (AHCV). Potential range filling (PRF) 
corresponds	to	the	area	of	Georgia	or	AHCV	(in	%)	predicted	to	be	
suitable for the species with our models. Actual range filling (ARF) 
corresponds to the area actually occupied by the species in the 
predicted	potential	distribution	of	the	species	(see	Section	“2”	for	
details on the PRF and ARF calculations). Note that ARF represents 
the minimal known distribution of the IAPs and that it could be 
underestimated due to sampling issues

Species

Georgia AHCV

PRF ARF PRF ARF

Ailanthus altissima 47.3 15.3 44.0 13.7

Ambrosia artemisiifolia 75.0 22.0 76.0 21.3

Amorpha fruticosa 49.6 6.1 43.5 2.0

Buddleja davidii 19.3 8.0 24.8 8.7

Chenopodium album 68.8 18.3 85.4 17.7

Clerodendrum bungei 30.2 6.1 37.2 10.6

Commelina communis 50.3 17.0 57.4 28.8

Conyza canadensis 67.1 5.8 70.3 12.1

Conyza graminifolia 16.8 14.1 24.6 15.4

Crassocephalum 
crepidioides

10.8 14.3 5.8 31.8

Elsholtzia ciliata 74.5 6.0 76.4 3.7

Galinsoga parviflora 23.9 10.6 27.9 18.4

Gleditsia triacanthos 45.8 6.1 37.7 9.4

Hydrocotyle vulgaris 0.0 0.0 0.1 0.0

Ixeridium dentatum 13.1 24.6 15.4 25.6

Miscanthus sinensis 41.3 1.4 58.2 2.9

Paspalum dilatatum 27.9 12.1 26.3 24.3

Paulownia tomentosa 44.5 4.6 43.8 8.8

Perilla nankinensis 33.9 20.0 45.0 25.2

Phytolacca americana 60.1 16.9 55.3 32.1

Polygonum thunbergii 33.9 9.9 48.4 10.7

Pueraria lobata 22.8 2.5 26.3 6.0

Robinia pseudoacacia 53.6 17.4 53.7 13.4

Solidago canadensis 37.5 4.5 54.5 7.1

Spiraea japonica 60.3 1.4 75.7 3.0

Ulex europaeus 7.4 31.6 11.0 41.7

Vitex rotundifolia 16.8 3.6 19.4 6.4
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data, cannot predict at which stage of invasion the IAPs are in each 
region, even if some indicative indexes can be derived (see PRF 
and ARF values in this study; Descombes et al., 2016). The stage 
of invasion by IAPs, known by local experts, should be considered 
when selecting appropriate measures to take against these IAPs 
(Blackburn et al., 2011). Despite these limitations, knowing which 
AHCV	in	Georgia	are	currently	colonized	by	IAPs	and	which	AHCV	
show a high climatic suitability under present and future climate is 
an important information to initiate effective prevention measures 
against	IAPs	within	AHCV.	While	AHCV	with	a	high	suitability	for	a	
large number of IAPs need the highest attention, the AHCV with a 
low number of highly suitable IAPs should not be ignored, as eradi-
cations are usually only successful if done at an early stage of inva-
sion and as single IAP species can already have a huge impact on the 
whole	ecosystem.	Such	“transformer	species”	include,	for	example,	
A. artemisiifolia and R. pseudoacacia (Ehrenfeld, 2010).

Recently, we established a monitoring program for IAPs at twelve 
monitoring sites in five different PAs in the west and in the east of 
Georgia, with the aim to follow the cover of both IAPs and members 
of the resident plant community in order to link the potential spread 
of	IAPs	with	changes	in	plant	biodiversity	over	time	(Slodowicz	et	al.,	
in press). The established monitoring scheme, presented at a work-
shop	 in	Tbilisi	 in	June	2015	to	NGOs	and	national	authorities,	will	
also allow disentangling effects of biotic resistance (high diversity 
plots will be more resistance to IAP invasion) from direct negative 
effects on IAPs on plant diversity.

5  | CONCLUSION

Our study showed that firstly, large AHCV with high plant endemism 
in Georgia are currently located outside of PAs and thus beyond the 
scope of established conservation management. Here, populations 
of rare and endemic plant species are specifically at risk due to IAPs. 
Secondly,	large	parts	of	the	AHCV	are	already	struggling	with	high	
numbers	of	IAPs,	notably	in	Adjara	and	Samegrelo	in	southwestern	
Georgia, in central Georgia around Kutaisi and in eastern Georgia 
north of Tbilisi. Thirdly, many IAPs are predicted to shift with chang-
ing climate toward higher altitudes and toward the east, potentially 
threatening AHCV in south- central Georgia.

Our study provides a good baseline for decision makers and 
stakeholders on where and how resources should be invested in 
the most efficient way to protect Georgia’s high plant richness from 
IAPs	(Maxwell	et	al.,	2009).	Various	management	tools	are	available	
ranging from programs to prevent the introduction of IAPs (e.g., 
Leung et al., 2002), eradication (Panetta et al., 2011), or mitiga-
tion through physical (cutting), chemical, or biocontrol programs 
(Müller-	Schärer	&	Collins,	2012;	Müller-	Schärer	&	Schaffner,	2008).
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