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1  | INTRODUC TION

Plant invasions have become an increasing threat to agriculture, 
human health, and local biodiversity (Pimentel, Zuniga, & Morrison, 

2005; Richter et al., 2013). Because invasive alien plants (IAPs) have 
also become a major issue in protected areas (PAs; Foxcroft, Pyšek, 
Richardson, & Genovesi, 2013), there is an urgent need to imple-
ment conservation actions to limit the impact of IAPs in areas of high 
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Abstract
Invasive alien plants (IAP) are a threat to biodiversity worldwide. Understanding and 
anticipating invasions allow for more efficient management. In this regard, predicting 
potential invasion risks by IAPs is essential to support conservation planning into 
areas of high conservation value (AHCV) such as sites exhibiting exceptional botani-
cal richness, assemblage of rare, and threatened and/or endemic plant species. Here, 
we identified AHCV in Georgia, a country showing high plant richness, and assessed 
the susceptibility of these areas to colonization by IAPs under present and future 
climatic conditions. We used actual protected areas and areas of high plant ende-
mism (identified using occurrences of 114 Georgian endemic plant species) as proxies 
for AHCV. Then, we assessed present and future potential distribution of 27 IAPs 
using species distribution models under four climate change scenarios and stacked 
single-species potential distribution into a consensus map representing IAPs rich-
ness. We evaluated present and future invasion risks in AHCV using IAPs richness as 
a metric of susceptibility. We show that the actual protected areas cover only 9.4% of 
the areas of high plant endemism in Georgia. IAPs are presently located at lower el-
evations around the large urban centers and in western Georgia. We predict a shift of 
IAPs toward eastern Georgia and higher altitudes and an increased susceptibility of 
AHCV to IAPs under future climate change. Our study provides a good baseline for 
decision makers and stakeholders on where and how resources should be invested in 
the most efficient way to protect Georgia’s high plant richness from IAPs.
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conservation values (AHCV) such as sites exhibiting exceptional bo-
tanical richness, assemblage of rare, and threatened and/or endemic 
plant species. While some countries have already established proce-
dures for the management of IAPs (e.g., USA, Switzerland; Bohren, 
2006; Van Driesche, Blossey, Hoddle, Lyon, & Reardon, 2002), many 
other countries are still in the process of evaluating the threats and 
risks caused by IAPs.

Prevention of biological invasion at the earliest stage is more ef-
fective than attempts at management of well-established infestations 
(Leung et al., 2002). In this regard, statistical models such as species dis-
tribution models (SDMs; Guisan & Thuiller, 2005) may represent useful 
tools when implementing conservation actions at large and local scales 
(e.g., Descombes et al., 2016; Heinänen, Erola, & von Numers, 2012). 
SDMs relate environmental characteristics (e.g., climatic and topo-
graphic variables) to the current geographical distribution of species in 
terms of presence/absence to fit species’ realized niches and predict the 
distribution of suitable habitats in space and time. Therefore, SDMs can 
prove useful in conservation by helping managers to visualize the inva-
sive potential of IAPs (Guisan & Thuiller, 2005) in AHCV. For instance, 
Thalmann et al. (2014) estimated the current and future susceptibility 
of PAs to 9 IAPs in Georgia with SDMs. However, as human-mediated 
biological invasions are recent phenomena presenting an ongoing ex-
pansion, there is a need to include a broader number of potential IAPs 
(e.g., IAPs not occurring yet in the region of interest) for the prevention 
of biological invasion.

Situated in the Caucasus mountain ranges, Georgia is known for 
its high plant biodiversity and endemism. The flora of Georgia encom-
passes about 4,400 native species of vascular plants and 380 non-
native plant species, from which 16 are classified as invasive (Kikodze 
et al., 2010). Approximately 21% of the Georgian flora is endemic to 
the Caucasus region, 278 of them being strictly endemic to Georgia 
(Gagnidze et al., 2002; Solomon et al., 2014). This high biodiversity is 
recognized by the national protection of 43 areas in Georgia, which fol-
low the IUCN guidelines (Dudley, 2008) and are general indicators of 
high biodiversity. While PAs are in general indicators of high biodiver-
sity, those areas are not necessarily encompassing high plant endemism 
or endangered species (i.e., critically endangered, endangered, and vul-
nerable following IUCN guidelines; Dudley, 2008), as it was shown for 
Armenia (Fayvush, Tamanyan, Kalashyan, & Vitek, 2013). Fayvush et al. 

(2013) showed that the protected natural areas of Armenia are missing 
important hotspots of plant endemism and even fail to preserve ade-
quately half of the plants under categories Critically endangered (CR), 
endangered (EN), and vulnerable (VU) by IUCN classification. Countries 
with high biodiversity and a high number of strictly endemic and sub-
endemic plant species, such as Georgia (Gagnidze et al., 2002; Solomon 
et al., 2014), have an international responsibility to protect them ade-
quately (see Convention on Biological Diversity: https://www.cbd.int/
convention/). Due to the high conservation value of endemic species 
and their susceptibility to IAPs and climate changes (e.g., Li et al., 2013; 
Barrett & Yates, 2015; Urban, 2015; Zhang et al., 2017), areas of high 
plant endemism should be considered for the assessment of future im-
pacts on endemic plant species in AHCV. In addition, reconciling poten-
tial inconsistencies between the distribution of PAs and areas of high 
endemic/endangered species richness would lead to a better predic-
tion of AHCV and conflict zones between IAPs and AHCV.

In this study, we identified AHCV in Georgia by combining the 
delimitation of the PAs with areas of high plant endemism. Here, 
we consider AHCV as regions exhibiting exceptional botanical spe-
cies richness and/or particular assemblage of rare, and threatened 
and/or endemic plant species. We then estimated the susceptibility 
of AHCV to invasion by 27 IAPs, including IAPs that still have not 
invaded Georgia and have the potential to become invasive, using 
SDMs for present and future climate conditions. More specifically, 
we investigate the following questions: (1) Are Georgia’s Protected 
Areas representative of areas of high plant endemism? (2) Which 
areas and AHCV in Georgia are more susceptible to IAPs and how 
will this susceptibility change under future climate scenarios?

2  | MATERIAL AND METHODS

2.1 | Study area

The study area corresponds to the boundary of the Georgian 
country situated in the Caucasus region and covers an area of ap-
proximately 69,700 km2 (Figure 1). Georgia is situated between two 
important mountain ranges, the Greater Caucasus range (north part 
culminating at 5,500 m) and the Lesser Caucasus range (South part). 
This particular topography protects Georgia from colder air masses 

F IGURE  1 Map of the study area 
representing the Georgian country with 
its elevation range (meter). The colored 
scale represents the elevation gradient. 
The protected areas are shown as gray-
shaded frames and areas of high plant 
endemism as black-rimmed frames

https://www.cbd.int/convention/
https://www.cbd.int/convention/
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from the north and partially from the hot and dry air masses from the 
south (Lydolph, 1977). Georgia displays diverse climate and vegeta-
tion types, ranging from subtropical in the western part, to continen-
tal in the eastern part, and temperate at high elevation.

2.2 | Areas of high conservation value

We identified AHCV based on Georgia’s Protected Areas and the 
areas of high plant endemism. Protected areas in Georgia follow 
the IUCN guidelines with categories ranging from “Strict Nature 
Reserve” (Category Ia) to “Protected Area with sustainable use of 
natural resources” (Category VI; Dudley, 2008). We excluded natural 
monuments (i.e., Category III) because of their small size and their 
priority on protecting natural features rather than the ecosystem 
(Dudley, 2008). The total surface of the 39 selected PAs represents 
approximately 7% of Georgia’s total area.

Out of 278 endemic species occurring in Georgia, we retained 
114 plant species for which we found occurrence data in Georgia 
(n = 765, Figure S1). From the selected endemic species, 88 species 
are strictly endemic to Georgia and 26 species are Caucasian endem-
ics (Table S1 and S2). Occurrence data were collected from the on-
line database Global Biodiversity Information Facility (GBIF; http://
www.gbif.org/) and from rich herbarium collections of the National 
Herbarium of Georgia (TBI), the herbarium of National Museum 
of Georgia (TGM), the Ivane Javakhishvili Tbilisi State University 
Herbarium, and the Batumi Botanical Garden (BAT) In addition, all 
volumes of the second edition of Flora of Georgia were consulted 
(except the large family Poaceae that is still not covered in the al-
ready published sources), which include information on the localities 
where the species was collected, frequently on the landmark level 
but always indicating the nearest settlement/urban areas. We veri-
fied that our subset of 114 species was a phylogenetically nonbiased 
sample of all the endemics. To do so, we constructed the phyloge-
netic tree of all Georgian endemics (n = 279) and the selected geo-
referenced endemics (n = 114) with the online program Phylomatic 
(Webb & Donoghue, 2005) and calculated the branch lengths for 
both trees with the program Phylocom Version 4.2 (Webb et al., 
2008). We then calculated the mean pairwise distance (mpd) of the 
selected 114 endemic plants with the “picante” package (Blomberg, 
Garland & Ives, 2003; Kembel et al., 2010)  in R (R Development 
Core Team, 2014, Version 3.1.2) and compared it to a null distribu-
tion generated from 1,000 random sampling of 114 species across 
the tips of the phylogenetic tree. We checked whether the mpd 
value is similar to random samples of the total species pool with a 
two-tailed test. The mpd value of the 114 georeferenced endemics 
showed no significant difference to the mpd values of the 114 ran-
domly sampled endemics (two-tailed test: p-value: .372), indicating 
that our subset of 114 species is a phylogenetically nonbiased sam-
ple of all the Georgian endemics.

From endemic occurrences, we generated a map of endemic 
species richness per pixel at a spatial resolution of 0.0083° (~1 km), 
using a focal moving window of 0.5° across the Georgian landscape 
and using a smoothing procedure with the “focal” function of the 

R package “raster” (Hijmans & Van Etten, 2014) as the mean of the 
values in a 0.083° neighborhood (i.e., 10 pixels radius). We consid-
ered pixels with more than 15 endemics as areas of high plant en-
demism and buffered this area by 0.5° in order to take into account 
the variability introduced by the focal window in the mapping pro-
cedure. The threshold of 15 species was chosen to insure that the 
selected areas of high plant endemism cover approximately 20% of 
Georgia’s surface (see Figure S2 for a cover representing approxi-
mately 10%, 5%, and 1% of Georgia). We considered this area as area 
of high plant endemism, representing 20.8% of Georgia’s surface 
(Figure 1). According to the worldbank database on protected ter-
restrial areas (https://data.worldbank.org/indicator/), which ranks 
countries according to their total surface protected, Georgia is only 
ranked 139 on 209 countries (i.e., 8.4% of its surface protected). This 
very low amount of PAs contrasts with the 71 countries having more 
than 20% of their surface protected, as well as with the neighbor-
ing country of Armenia situated in the Lesser Caucasus mountain 
range with 24.8% of its surface protected. Considering an endemic 
area covering approximately 20% of the Georgian country ensures 
to reach similar surfaces for AHCV compared to other worldwide 
or neighboring countries. As observations of endemics are rare, we 
used the previous focal window approach, buffers and threshold to 
lower the impact of the low data availability and to obtain a regional 
estimate of the endemic richness. Using a smaller focal window, 
buffers and thresholds would lead to increase the chance of missing 
areas of high plant endemism due to lower data availability at a local 
scale. The selected endemic areas represent the Georgian potential 
areas of high plant endemism based on georeferenced observations. 
We are not aware of any published sources on areas of concentra-
tion of endemic species, which would allow to validate our selected 
areas of high plant endemism or to assess if some them are missing 
in some areas of Georgia. Finally, we defined AHCV in Georgia as 
the combination of areas of high plant endemism and Georgia’s pro-
tected areas, together representing 27.8% of the Georgian surface 
(Figure 1).

2.3 | Invasive alien plants

The non-native flora of Georgia comprises 380 species (excluding 
cultivated species which are not, or only rarely found in the natu-
ral environment), representing 8.9% of the total flora of Georgia, 
of which 16 plant species are actually considered as major threat 
and classified as IAPs (Kikodze et al., 2010; Richardson et al., 2000). 
We selected 27 IAPs (including all 16 recognized IAPs in Georgia) 
presenting more than 100 occurrences worldwide and showing high 
potential to become invasive based on their status in other European 
countries with similar climatic conditions (see Table S3 for details 
on the selected IAPs). Among the selected IAPs, the most noxious 
ones are Ambrosia artemisiifolia, Robinia pseudoacacia, and Ailanthus 
altissima (see Thalmann et al., 2014). Occurrence data (N = 374,232) 
were collected from several Georgian herbaria (i.e., Georgian State 
Museum, Tbilisi State University Herbarium, and Batumi Botanical 
Herbarium), from occurrence points collected in the field with a 

http://www.gbif.org/
http://www.gbif.org/
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GPS device (Garmin GPSMAP 64), from a previous study (Thalmann 
et al., 2014) and from the online database GBIF (http://www.gbif.
org/; see Figure S3). GBIF data are known to be subject to spatial 
bias and accuracy issues, especially in species identification, tax-
onomy, or GPS precision (e.g., Beck et al., 2014; Meyer et al., 2016) 
. Thus, all IAPs used in this study were checked for synonyms in the 
data collection, missing or clearly false locality coordinates were 
removed from the analyses, and our modeling procedure includes 
a disaggregation strategy reducing the potential spatial bias (Beck 
et al., 2014). Because 28% of the downloaded GBIF data contained 
no information about the precision of the observation, we decided 
to keep all the observations. So far, IAP occurrences in Georgia are 
mainly found in the Adjara region in southwestern Georgia and in the 
Samegrelo region in western Georgia and around the cities of Kutaisi 
and Tbilisi (see Figure S4). However, those distributions may be the 
result of sampling bias close to cities and along main roads.

2.4 | Environmental predictor variables

To model the potential distribution of IAPs, we used six climatic 
variables known to have a strong influence on plant physiological 
performance and survival and used by a previous study on IAPs 
in Georgia (Bartlein et al., 1986; Thalmann et al., 2014). We used 
maximal temperature of the warmest month (tmax), minimal tem-
perature of the coldest month (tmin), temperature annual range 
(tar), mean temperature of the wettest month (twetq), precipita-
tion of wettest month (pwet), and precipitation of the driest month 
(pdry). Environmental variables were obtained from the WorldClim 
database (Hijmans et al., 2005) with a spatial resolution of 0.0083° 
(~1 km). We extracted the values of these climatic predictors for all 
IAPs observations worldwide (n = 374,232) and checked for mul-
ticollinearity with pairwise correlations in order to avoid spurious 
model calibrations (Guisan & Thuiller, 2005). It is common practice 
(e.g., Aguirre-Gutiérrez et al., 2013) to retain only predictors with 
pairwise correlation < |.7|. As the Pearson correlations were globally 
lower than this threshold except for tar and tmin (r = −.74), we kept 
all predictor variables as used in the study of Thalmann et al. (2014).

2.5 | Species distribution models

To determine the potential distribution of the 27 selected IAPs in 
Georgia, we built SDMs by relating occurrence observations to the 
six environmental variables using custom code in R. Models have the 
tendency to vary among the different statistical techniques (Elith 
et al., 2006; Thuiller et al., 2004). Thus, we ran an Ensemble approach 
(Araújo & New, 2007) by averaging the results of five commonly used 
statistical techniques: generalized linear model (McCullagh & Nelder, 
1989), gradient boosting model (Friedman, 2001; Ridgeway, 1999), 
general additive models (Guisan & Zimmermann, 2000), Random 
Forest (Breiman, 2001), and maximum entropy (Phillips et al., 2006; 
Elith et al., 2011). Models were calibrated with worldwide occur-
rences (i.e., native and invaded ranges) and projected in Georgia at 
a spatial resolution of 0.0083° (~1 km2). We chose to include all the 

occurrence data available for the native and invaded range in order 
to account for possible niche shifts in the invaded area (even if they 
are rare among species; see Petitpierre et al., 2012) and to obtain 
more accurate models for predicting the potential distribution of the 
species in the invaded range (Beaumont et al., 2009; Broennimann 
& Guisan, 2008).

To calibrate the models, we firstly avoided spatial autocorrela-
tion in the presences data using the disaggregation tool provided 
by the “ecospat” package (Broennimann et al., 2017) in R by setting 
a minimal distance of 0.083° between presences. We then selected 
randomly a set of pseudo-absences (also known as background data; 
Wisz & Guisan, 2009). Pseudo-absences were drawn within the bi-
omes occupied by the species. For this task, we used 14 biomes from 
the Terrestrial Ecoregions of the World (Olson et al., 2001). With 
this approach, we ensure that pseudo-absences are drawn only from 
regions where the species occurs and that have been accessible as 
the species speciated (Barve et al., 2011; Thalmann et al., 2014) . We 
selected randomly the same amount of pseudo-absences than pres-
ences, gave equal weights to presences and pseudo-absences in the 
calibration of the model, and averaged several runs (Barbet-Massin 
et al., 2012). We ran 10 iterations of models, avoiding spatial auto-
correlation among presences, and sampling each time the pseudo-
absences within the biomes where the species occurs.

To evaluate the capacity of the models to correctly predict the 
presence and absence of the species at the global scale, we used 
the previously selected set of presences and pseudo-absences for 
each iteration. Models were calibrated on a random sample of 70% 
of the presences and pseudo-absences data, and evaluated on the 
remaining 30%. We used the area under the ROC plot curve (AUC; 
Fielding & Bell, 1997) and the True Skill Statistics (TSS; Allouche et 
al., 2006), which both evaluate the ability of the model to discrimi-
nate presences from absences. AUC varies between 0 (counter pre-
diction) and 1 (perfect prediction), 0.5 meaning random predictions. 
TSS is scaled between −1 and 1, 0 meaning random predictions. As 
biological invasions are ongoing processes, the selected absences 
may not be representative of true absences and may thus bias the 
evaluation (Václavík & Meentemeyer, 2009). We thus added one 
presence-only evaluator: the sensitivity calculated on predictions 
binarised with the threshold providing the best TSS. The sensitivity 
is a threshold-dependent evaluator corresponding to the rate of 
presences correctly classified by the model. Models are considered 
to have reliable prediction performances with AUC values > 0.70 
(i.e., excellent AUC  >  0.90; good 0.80  <  AUC  <  0.90; fair 
0.70  <  AUC  <  0.80; poor AUC  <  0.70; see Swets, 1988) and TSS 
values > 0.40 (i.e., excellent TSS  >  0.75; good 0.40  <  TSS  <  0.75; 
poor TSS  <  0.40; see Landis & Koch, 1977). Finally, evaluators 
were averaged for all models and replicates (10 iterations).

In addition, we evaluated the predictive performance of the 
models in Georgia by calibrating the models with all occurrences 
and pseudo-absences present outside Georgia (i.e., presences and 
pseudo-absences inside Georgia were removed from the data) 
and by evaluating the models on presences and random pseudo-
absences selected in Georgia by following the same procedure as 

http://www.gbif.org/
http://www.gbif.org/
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above for pseudo-absences selection. Predictive performance of 
the models in Georgia was only assessed for 19 IAPs species that 
presented more than 10 occurrences after avoiding spatial autocor-
relation. Evaluators were averaged for all models and replicates (10 
iterations).

Finally, we averaged the 10 projections of the five algorithms 
together in a single map and binarised it using a threshold max-
imizing the TSS. This threshold was obtained by averaging the 
threshold estimated for each algorithm and iterations with the 
“optimal.thresholds” function from the “PresenceAbsence” pack-
age (Freeman & Moisen, 2008) in R. All binarised maps were then 
combined into one consensus map representing the species rich-
ness of IAPs, used in this study as a metric of invasion suscep-
tibility (Figure 2a). We finally summed species mean predictions 
of habitat suitability (mean of the five different algorithms) of all 
IAPs together in a single map representing a global invasion risk 
and found a strong and significant correlation between this map 
and the richness map inferred from binary conversion (Spearman 
correlation: r > .97, p-value < .001; see Figures S5 and S6). For the 
following analyses, we only used species richness of IAPs as a met-
ric of invasion susceptibility.

The choice of the selected pseudo-absences sampling strat-
egy can profoundly affect SDM predictions (e.g., Gu & Swihart, 
2004), which may vary between statistical models (Barbet-Massin 
et al., 2012). To assess the reliability of our results, we compared 
our IAPs richness map to richness maps obtained with two differ-
ent pseudo-absences sampling strategies: (1) a larger number of 

randomly selected pseudo-absences (here 5k more than number 
of occurrences) with equal weighting for presences and pseudo-
absences as recommended by Barbet-Massin et al. (2012) and (2) a 
biased background using a target-group sampling approach where 
a same number of pseudo-absences and occurrences are randomly 
selected from the total IAPs occurrences (see Merow et al., 2013; 
Phillips et al., 2009). All pseudo-absences were selected into the 
biomes where the species occurs. Overall, we found a very strong 
correlation between our initial IAPs richness map and the richness 
maps derived from higher number of pseudo-absences (Spearman 
correlation: r = .98, p-value < .001) and from target-group pseudo-
absences selection (Spearman correlation: r = .91, p-value < .001), 
which supports and gives confidence to our methodology.

2.6 | Climate change scenarios

To model the future distribution of invasive plant species, we used 
two different climate projection scenarios for 2050 (i.e., for the 
2041–2060 time period) with two different global climate models 
(GCMs). We used two representative concentration pathway scenar-
ios: RCP 4.5 (moderate, mean global warming increase of 1.4°C) and 
RCP 8.5 (more severe, mean global warming increase of 2.0°C). We 
used the GCMs of the Fifth Assessment IPCC report (AR5, 2014); 
HadGEM2-AO (Martin et al., 2011) and IPSL-CM5A-LR (Dufresne 
et al., 2013). All variables were obtained from the WorldClim da-
tabase (Hijmans et al., 2005) with a spatial resolution of 0.0083° 
(~1 km2). We projected all models for the invasive plant species with 

F IGURE  2  Invasive alien plant species 
richness in Georgia for the (a) present 
climate and (b) future climate for the year 
2050 (RCP 8.5 IPSL-CM5A-LR climate 
change scenario). The colored scale 
represents the species richness. Each 
pixel represents the invasive alien plant 
richness on this site location (resolution: 
1 km2). The protected areas are shown 
as gray-shaded frames and areas of high 
plant endemism as black-rimmed frames
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the two different scenarios assuming unlimited dispersal of species, 
which has been shown to be a close approximation to using dispersal 
kernels in mountains (Engler et al., 2009).

2.7 | Species richness of IAPs as a metric for 
invasion risk

We evaluated present and future invasion risks by IAPs for the entire 
territory of Georgia and for AHCV using predicted IAP richness as a 
metric of invasion susceptibility and by comparing present to future 
changes in four richness classes with the same ranges (number of 
IAPs predicted: 0, i.e., absent; 1–9, i.e., low; 10–18, i.e., medium; and 
19–26, i.e. high). Then, for each species in Georgia and AHCV, we 
calculated a potential range filling index (PRF) and an actual range 
filling index (ARF) following a procedure modified from Descombes 
et al. (2016). PRF is defined as the percent of area predicted to be 
suitable in the total area available (predicted area of the species in 
Georgia/AHCV divided by the total area of Georgia/AHCV). In order 
to estimate the actual range occupied by the species in Georgia/
AHCV, we buffered current occurrences of IAPs by 10 km. ARF is 
defined as the percent of area actually occupied by the species in 
the predicted potential distribution of the species in Georgia/AHCV 
(actual estimated area of the species in Georgia/AHCV divided by 
the predicted area of the species in Georgia/AHCV). Note that ARF 
represents the minimal known distribution of the IAPs and that it 
could be underestimated due to sampling issues.

3  | RESULTS

3.1 | AHCV in Georgia

Our analysis showed that large parts of the areas of high plant end-
emism are located in central Georgia, north of Kutaisi in the regions 
of Racha, Imereti, and Samtskhe-Javakheti and in the northwestern 
part in Abkhazia (Figure 1). We found that only 9.4% of areas of high 
plant endemism are inside PAs, showing a clear lack of protection for 
endemic plant species in Georgia (Figure 1).

3.2 | Models performance

Distribution models calibrated and evaluated at the global scale 
showed reliable predictions for the 27 selected IAPs, with good 
to excellent AUC values (0.849 ≤ AUC ≤ 0.981), good to excel-
lent TSS values (0.572 ≤ TSS ≤ 0.902), and good sensitivity val-
ues (0.776 ≤ sensitivity ≤ 0.977; Table S4). Overall, evaluations of 
distribution models calibrated at the global scale and evaluated in 
Georgia for 19 IAPs showed reliable predictions with fair to excel-
lent AUC values (0.704 ≤ AUC ≤ 0.941), good to excellent TSS values 
(0.497 ≤ TSS ≤ 0.849), and good sensitivity values (0.815 ≤ sen-
sitivity ≤ 0.982 (Table S5; Figure S7), except for A. artemisiifolia, 
Chenopodium album, Conyza canadensis, Elsholtzia ciliata, Galinsoga 
parviflora, R. pseudoacacia, and Solidago canadensis (Table S5). 
Differences between global and Georgian evaluations for AUC and 

TSS evaluators indicate that A. artemisiifolia, C. album, C. canadensis, 
E. ciliata, G. parviflora, R. pseudoacacia, and S. canadensis are prob-
ably still not at equilibrium in Georgia, resulting in weak predictive 
abilities when models are evaluated with Georgian occurrences only 
(Table S5). However, the evaluation of distribution models when 
using a presence-only evaluator (i.e., sensitivity) shows that actual 
occurrences in Georgia are well predicted by the distribution models, 
with sensitivity values >= 0.775 for most of the IAPs (Table S5; Figure 
S7), except for E. ciliata (mean ± SD; sensitivity = 0.597 ± 0.212) and 
G. parviflora (sensitivity = 0.636 ± 0.170).

3.3 | Current and future distribution of IAPs 
in Georgia

For the current climate, the SDMs predicted a high suitability for 
almost all selected 27 IAPs along the coastline in western Georgia 
and in central Georgia at lower altitudes (Figure 2a). Another area of 
high suitability for IAPs is in eastern Georgia north of Tbilisi, with up 
to 15 IAPs (Figure 2a). Approximately 11.4% of total Georgian area 
is not suitable for the IAPs investigated in this study and is mostly 
located at high elevation (Table 1, Figure 2a). The area suitable also 
decreased with the number of IAPs (Table 1). The potential distri-
bution of IAPs in Georgia (i.e., PRF) varies highly between species 
(Table 2), ranging from 75% of Georgia’ surface (A. artemisiifolia) to 
0% (Hydrocotyle vulgaris; Table 2). However, the ARF of IAPs in the 
predicted potential distribution (i.e., PRF) is overall low, ranging from 
31.6% (Ulex europaeus) to 0% (H. vulgaris), indicating that most suit-
able areas for IAPs are not invaded yet (Table 2).

Under future climate projections (i.e., year 2050), the suitabil-
ity ranges for IAPs will shift toward higher altitudes in the higher 
and lesser Caucasus Mountains and toward the East of Georgia 
(Figures 2b and S8). Under the four climate change models, the areas 
with no suitability for IAPs will decrease compared to the present 
state (i.e., <7.6% of Georgia’s surface; Table 1 and S6, Figures 2b 
and S8), resulting from an increase in suitability at high elevation 
sites. Overall, future climate projections show that there will be a 
global decrease in suitability for 1–9 and 19–26 IAPs (Tables 1 and 
S6, Figures 2b and S8) and suitability areas for 10–18 IAPs will dras-
tically increase from 29% under current climate conditions up to 
53.2% (Tables 1 and S6, Figures 2b and S8).

3.4 | AHCVs at risk by IAPs

For the current climate, the AHCV most at risk due to predicted 
high suitability of IAPs is in central Georgia north of Kutaisi, in 
northwestern Georgia in Abkhazia, in western Georgia along the 
coastline in Samegrelo, and in southwestern Georgia in Adjara 
(Figure 2a). The areas with no suitability for IAPs in AHCV rep-
resent 9.9% of total AHCV area, while areas with suitability for 
1–9, 10–18, and 19–26 IAPs represent 36.2%, 26.6%, and 27.3%, 
respectively (Table 1). The AHCV that is not or only barely af-
fected by IAPs is the PAs in the far south in the lesser Caucasus 
Mountains and in the northeast in the higher Caucasus Mountains 
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(Figure 2a). The potential distribution of IAPs in AHCV varies 
highly between species (Table 2), ranging from 76.4% of AHCV 
surface (E. ciliata) to 0.1% (H. vulgaris; Table 2). However, the ARF 
in AHCV is globally low, ranging from 41.7% (U. europaeus) to 0.1% 
(H. vulgaris), indicating that most suitable areas for IAPs are not 
invaded yet (Table 2).

Under the four future climate change models, the areas suitable 
for IAPs within AHCV will increase compared to the present state 
(i.e., <5.7% of AHCV surface; Tables 1 and S6, Figures 2b and S8). 
Overall, future climate projections in AHCV show that there will 
be a global decrease in suitability for 1–9 IAPs (Tables 1 and S6, 
Figures 2b and S8), suitability areas for 10–18 IAPs will drastically 
increase from 26.6% under current climate conditions up to 59.3% 
(Tables 1 and S6, Figures 2b and S8), and suitability areas for 19–26 
IAPs will increase or decrease depending on the scenario (Tables 1 
and S6, Figures 2b and S8).

Protected Areas will be slightly less affected by a predicted high 
suitability of IAPs compared to the total Georgia or AHCV (Table 1). 
Only the southern-most PAs will stay unaffected and have a lower 
invasion susceptibility in the future. All other PAs will face a higher 
risk with increasing areas of high suitability for IAPs, notably in 
higher elevations. Interestingly, actual PAs seems to be located in 
areas with low suitability for IAPs (i.e., 21.6% coverage with no suit-
ability for IAPs), while, in contrast, areas of high plant endemism are 
located on areas with very high IAPs richness (Table 1).

4  | DISCUSSION

For the first time, we used an approach which includes both PAs 
and areas of high plant endemism to identify AHCV at the scale 
of a country. We found in the case of Georgia that PAs only cover 
a small portion of the areas of high plant endemism (i.e., 9.4%). 
We show that areas of high plant endemism are located in areas 
with higher suitability for IAPs compared to PAs, subjecting en-
demic plant species to high threats from IAPs. As areas of high 
plant endemism are located outside official Georgian Protected 
Areas, they have a lower chance to be included in IAP manage-
ment programs.

4.1 | Areas of high conservation value

Our finding reveals that using PAs as the only proxy for delimit-
ing AHCV (e.g., Thalmann et al., 2014) may be of limited relevance. 
Protected Areas represent only 7% of the surface of Georgia, which 
translate the fact that resources allocated to conservation are lim-
ited to only a small fraction of areas with conservation value in order 
to maximize biodiversity protection in complementarity with other 
PAs in the network of PAs (Foxcroft et al., 2013). Using data on en-
demic species allows a more inclusive coverage of AHCV, with a 
surface reaching 27.4% of the surface of Georgia. Overall, we show 
that endemics are in large part distributed outside of PAs and are 
therefore at risk of competition by IAPs, but also by nonsustain-
able land use such as overgrazing, farming, or urbanization (Reidsma 
et al., 2006; Seto et al., 2012). A similar pattern was also found in 
Armenia (Fayvush et al., 2013), where protected natural areas are 
missing important hotspots of plant endemism and fail to preserve 
adequately half of the threatened plants according to the IUCN clas-
sification (i.e., critically endangered, endangered, and vulnerable). 
This is a strong signal that the already existing PAs in Georgia are not 
sufficient to protect Georgia’s rich biodiversity.

The paucity of data on rare and endemic species is a common 
problem in conservation biology (Engler et al., 2004). Our data 
make no exception as it contains enough and sufficiently precise 
data for only 41% of the total number of Georgian endemic species. 
However, our subset of species is a phylogenetically nonbiased sam-
ple representative of Georgian endemic plant species. In addition, 
the area covered by our AHCV is more or less representative of bio-
diversity and endemic-rich areas in Georgia, especially in Abkhazia 
and Ajara (in the northwesternmost and southwesternmost parts, 
respectively) supporting Tertiary flora and being known as refugia of 
remote geological epochs (e.g., Kolakowsky, 1961; Nakhutsrishvili, 
2012). However, more efforts should be invested into recording en-
demic species to better define endemic-rich areas in Georgia (i.e., 
especially in areas poorly investigated) using scientific-based sam-
pling strategies (e.g., random stratified sampling). Note that while 
reviewing the list of Georgian endemic plant species, we found out 
that 11 of them were not endemic, but were synonyms to species 
ranging beyond the Caucasus region. We thus strongly recommend 

TABLE  1 Threat potential of the 27 invasive alien plants (IAPs) for the present and the future in Georgia, potential area of high plant 
endemism (AHPE), protected areas (PAs), and area of high conservation values (AHCV; i.e., AHPE and PAs). Values correspond to the percent 
of predicted surface occupied by the different ranges of invasive species richness (0, 1–9, 10–18, and 19–26 species). Future predictions are 
for the RCP 8.5 IPSL-CM5A-LR climate change scenario for the year 2050 (see Table S6 for the results of the other future climate change 
scenarios)

IAPs richness

Georgia (%) AHPE (%) PAs (%) AHCV (%)

Current Future Current Future Current Future Current Future

0 11.4 2.2 4.4 0.1 21.6 6.1 9.9 2.0

1–9 39.5 33.6 33.9 10.4 44.3 36.9 36.2 18.4

10–18 29.0 53.2 28.9 53.6 20.8 39.6 26.6 49.4

19–26 20.1 11.0 32.8 36.0 13.3 17.4 27.3 30.3
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to critically review and update the current list of Georgian endemic 
plant species and to put efforts into georeferencing the remaining 
endemics in order to better define endemic-rich areas in Georgia.

4.2 | Current and future AHCV at high risk by IAPs

Presently, the highest concentration of IAPs is in the Adjara region in 
southwest Georgia, around Tbilisi area, and in central Georgia around 
Kutaisi (Figure S4). The distribution of IAPs is mostly associated with 
human activity around urban areas (Hulme, 2003). In particular, high 

soil disturbance and increased traffic around big agglomerations 
may have further facilitated plant invasions (Catford et al., 2012), as 
well as garden escapes from botanical gardens (Hulme, 2015). Our 
results also demonstrate that all IAPs have largely not yet reached all 
their potential distribution in Georgia and AHCV (see PRF and ARF 
values; Table 2), testifying for the recent and ongoing expansion of 
biological invasions in Georgia. The dispersal of these species should 
be limited by implementing conservation actions, particularly to limit 
their dispersal in AHCV.

A rather alarming finding of our study is that suitable areas for 
IAPs will increase with warmer climate, notably toward higher al-
titudes in the greater and lesser Caucasus. Under future climate 
change scenarios, IAPs will disperse to higher elevation on newly 
available suitable areas, leading to a decrease in low IAPs richness 
areas at high elevation. On the other hand, we also observe a de-
crease in suitability to IAPs at low elevation (Figure 2), which means 
that climate change will also decrease the suitability of some IAPs 
in the western part of Georgia (Figure 2). However, the species’ 
range response to climate change along elevation gradients is not 
expected to occur simultaneously with climate change, but with a 
species-specific temporal lag explained by variation in physiological 
and demographic responses, altered biotic interactions and aspects 
of the physical environment (Alexander et al., 2018). Although plant 
communities at higher altitudes are expected to be at lower risk of 
invasion due to lower propagule pressure and stressful abiotic condi-
tions (Petitpierre et al., 2016; Zefferman et al., 2015), with increased 
global connectivity and changing climate, the risk of plant invasions 
at high altitudes is also predicted to increase (Pauchard et al., 2009). 
Anticipating which areas are predicted to be at high risk of inva-
sion should greatly increase the efficiency of prevention programs 
against IAPs (Pauchard et al., 2015).

4.3 | From predictions of climatic suitability to local 
impact assessments

Our approach predicts the potential suitability for IAPs but cannot 
consider the true in situ impact of the IAPs on their environment. 
Our predictions of potential suitability could be improved using 
finer resolution SDMs (e.g., Descombes et al., 2016; Heinänen et al., 
2012; Razgour et al., 2011) or by exploiting available knowledge at 
the species level. In a recent study, a scoring system for invasive spe-
cies, based on their environmental and socio-economic impact, was 
developed (Kumschick et al., 2015). The risk posed by these spe-
cies could be refined using this scoring system. For example, for the 
same predicted suitability value, we can expect R. pseudoacacia (i.e., 
with a global environmental and socio-economic impact score of 20) 
to have a 10-fold higher in situ impact than Phytolacca Americana 
(global impact score of 2). In addition, trait-based approaches could 
be used for assessing and mapping potential niche overlap between 
native and exotic species (Elleouet et al., 2014). However, those 
analyses need broad data on species morphological traits which 
are rare for our selected endemic plant species. Furthermore, our 
models, as every static distribution models based on presence-only 

TABLE  2 Potential and actual range filling of the 27 invasive 
alien plants (IAPs) for the present in Georgia and area of high 
conservation values (AHCV). Potential range filling (PRF) 
corresponds to the area of Georgia or AHCV (in %) predicted to be 
suitable for the species with our models. Actual range filling (ARF) 
corresponds to the area actually occupied by the species in the 
predicted potential distribution of the species (see Section “2” for 
details on the PRF and ARF calculations). Note that ARF represents 
the minimal known distribution of the IAPs and that it could be 
underestimated due to sampling issues

Species

Georgia AHCV

PRF ARF PRF ARF

Ailanthus altissima 47.3 15.3 44.0 13.7

Ambrosia artemisiifolia 75.0 22.0 76.0 21.3

Amorpha fruticosa 49.6 6.1 43.5 2.0

Buddleja davidii 19.3 8.0 24.8 8.7

Chenopodium album 68.8 18.3 85.4 17.7

Clerodendrum bungei 30.2 6.1 37.2 10.6

Commelina communis 50.3 17.0 57.4 28.8

Conyza canadensis 67.1 5.8 70.3 12.1

Conyza graminifolia 16.8 14.1 24.6 15.4

Crassocephalum 
crepidioides

10.8 14.3 5.8 31.8

Elsholtzia ciliata 74.5 6.0 76.4 3.7

Galinsoga parviflora 23.9 10.6 27.9 18.4

Gleditsia triacanthos 45.8 6.1 37.7 9.4

Hydrocotyle vulgaris 0.0 0.0 0.1 0.0

Ixeridium dentatum 13.1 24.6 15.4 25.6

Miscanthus sinensis 41.3 1.4 58.2 2.9

Paspalum dilatatum 27.9 12.1 26.3 24.3

Paulownia tomentosa 44.5 4.6 43.8 8.8

Perilla nankinensis 33.9 20.0 45.0 25.2

Phytolacca americana 60.1 16.9 55.3 32.1

Polygonum thunbergii 33.9 9.9 48.4 10.7

Pueraria lobata 22.8 2.5 26.3 6.0

Robinia pseudoacacia 53.6 17.4 53.7 13.4

Solidago canadensis 37.5 4.5 54.5 7.1

Spiraea japonica 60.3 1.4 75.7 3.0

Ulex europaeus 7.4 31.6 11.0 41.7

Vitex rotundifolia 16.8 3.6 19.4 6.4
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data, cannot predict at which stage of invasion the IAPs are in each 
region, even if some indicative indexes can be derived (see PRF 
and ARF values in this study; Descombes et al., 2016). The stage 
of invasion by IAPs, known by local experts, should be considered 
when selecting appropriate measures to take against these IAPs 
(Blackburn et al., 2011). Despite these limitations, knowing which 
AHCV in Georgia are currently colonized by IAPs and which AHCV 
show a high climatic suitability under present and future climate is 
an important information to initiate effective prevention measures 
against IAPs within AHCV. While AHCV with a high suitability for a 
large number of IAPs need the highest attention, the AHCV with a 
low number of highly suitable IAPs should not be ignored, as eradi-
cations are usually only successful if done at an early stage of inva-
sion and as single IAP species can already have a huge impact on the 
whole ecosystem. Such “transformer species” include, for example, 
A. artemisiifolia and R. pseudoacacia (Ehrenfeld, 2010).

Recently, we established a monitoring program for IAPs at twelve 
monitoring sites in five different PAs in the west and in the east of 
Georgia, with the aim to follow the cover of both IAPs and members 
of the resident plant community in order to link the potential spread 
of IAPs with changes in plant biodiversity over time (Slodowicz et al., 
in press). The established monitoring scheme, presented at a work-
shop in Tbilisi in June 2015 to NGOs and national authorities, will 
also allow disentangling effects of biotic resistance (high diversity 
plots will be more resistance to IAP invasion) from direct negative 
effects on IAPs on plant diversity.

5  | CONCLUSION

Our study showed that firstly, large AHCV with high plant endemism 
in Georgia are currently located outside of PAs and thus beyond the 
scope of established conservation management. Here, populations 
of rare and endemic plant species are specifically at risk due to IAPs. 
Secondly, large parts of the AHCV are already struggling with high 
numbers of IAPs, notably in Adjara and Samegrelo in southwestern 
Georgia, in central Georgia around Kutaisi and in eastern Georgia 
north of Tbilisi. Thirdly, many IAPs are predicted to shift with chang-
ing climate toward higher altitudes and toward the east, potentially 
threatening AHCV in south-central Georgia.

Our study provides a good baseline for decision makers and 
stakeholders on where and how resources should be invested in 
the most efficient way to protect Georgia’s high plant richness from 
IAPs (Maxwell et al., 2009). Various management tools are available 
ranging from programs to prevent the introduction of IAPs (e.g., 
Leung et al., 2002), eradication (Panetta et al., 2011), or mitiga-
tion through physical (cutting), chemical, or biocontrol programs 
(Müller-Schärer & Collins, 2012; Müller-Schärer & Schaffner, 2008).
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