968 research outputs found
Semidirect computation of three-dimensional viscous flows over suction holes in laminar flow control surfaces
A summary is given of the attempts made to apply semidirect methods to the calculation of three-dimensional viscous flows over suction holes in laminar flow control surfaces. The attempts were all unsuccessful, due to either (1) lack of resolution capability, (2) lack of computer efficiency, or (3) instability
3-d resistive MHD simulations of magnetic reconnection and the tearing mode instability in current sheets
Magnetic reconnection plays a critical role in many astrophysical processes
where high energy emission is observed, e.g. particle acceleration,
relativistic accretion powered outflows, pulsar winds and probably in
dissipation of Poynting flux in GRBs. The magnetic field acts as a reservoir of
energy and can dissipate its energy to thermal and kinetic energy via the
tearing mode instability. We have performed 3d nonlinear MHD simulations of the
tearing mode instability in a current sheet. Results from a temporal stability
analysis in both the linear regime and weakly nonlinear (Rutherford) regime are
compared to the numerical simulations. We observe magnetic island formation,
island merging and oscillation once the instability has saturated. The growth
in the linear regime is exponential in agreement with linear theory. In the
second, Rutherford regime the island width grows linearly with time. We find
that thermal energy produced in the current sheet strongly dominates the
kinetic energy. Finally preliminary analysis indicates a P(k) 4.8 power law for
the power spectral density which suggests that the tearing mode vortices play a
role in setting up an energy cascade.Comment: 4 pages, 8 figures, accepted for publication in the International
Journal of Modern Physics D, proceedings of HEPRO meeting, held in Dublin, in
September 200
Potential flows in a core-dipole-shell system: numerical results
Numerical solutions for: the integral curves of the velocity field
(streamlines), the density contours, and the accretion rate of a steady-state
flow of an ideal fluid with p=K n^(gamma) equation of state orbiting in a
core-dipole-shell system are presented. For 1 < gamma < 2, we found that the
non-linear contribution appearing in the partial differential equation for the
velocity potential has little effect in the form of the streamlines and density
contour lines, but can be noticed in the density values. The study of several
cases indicates that this appears to be the general situation. The accretion
rate was found to increase when the constant gamma decreases.Comment: RevTex, 8 pages, 5 eps figures, CQG to appea
Investigation of the complex dynamics and regime control in Pierce diode with the delay feedback
In this paper the dynamics of Pierce diode with overcritical current under
the influence of delay feedback is investigated. The system without feedback
demonstrates complex behaviour including chaotic regimes. The possibility of
oscillation regime control depending on the delay feedback parameter values is
shown. Also the paper describes construction of a finite-dimensional model of
electron beam behaviour, which is based on the Galerkin approximation by linear
modes expansion. The dynamics of the model is close to the one given by the
distributed model.Comment: 18 pages, 6 figures, published in Int. J. Electronics. 91, 1 (2004)
1-1
Numerical modeling of oscillating Taylor bubbles
In this study, computational fluid dynamics (CFD) modeling is used to simulate Taylor bubbles rising in vertical pipes. Experiments indicate that in large diameter (0.29 m) pipes for an air–water system, the bubbles can rise in a oscillatory manner, depending on the method of air injection. The CFD models are able to capture this oscillatory behavior because the air phase is modeled as a compressible ideal gas. Insights into the flow field ahead and behind the bubble during contraction and expansion are shown. For a bubble with an initial pressure equal to the hydrostatic pressure at its nose, no oscillations are seen in the bubble as it rises. If the initial pressure in the bubble is set less than or greater than the hydrostatic pressure then the length of the bubble oscillates with an amplitude that depends on the magnitude of the initial bubble pressure relative to the hydrostatic pressure. The frequency of the oscillations is inversely proportional to the square root of the head of water above the bubble and so the frequency increases as the bubble approaches the water surface. The predicted frequency also depends inversely on the square root of the average bubble length, in agreement with experimental observations and an analytical model that is also presented. In this model, a viscous damping term due to the presence of a Stokes boundary layer for the oscillating cases is introduced for the first time and used to assess the effect on the oscillations of increasing the liquid viscosity by several orders of magnitude
Sources of Food Affect Dietary Adequacy of Inuit Women of Childbearing Age in Arctic Canada
Dietary transition in the Arctic is associated with decreased quality of diet, which is of particular concern for women of childbearing age due to the potential impact of maternal nutrition status on the next generation. The study assessed dietary intake and adequacy among Inuit women of childbearing age living in three communities in Nunavut, Canada. A culturally-appropriate quantitative food-frequency questionnaire was administered to 106 Inuit women aged 19-44 years. Sources of key foods, energy and nutrient intakes were determined; dietary adequacy was determined by comparing nutrient intakes with recommendations. The prevalence of overweight/obesity was >70%, and many consumed inadequate dietary fibre, folate, calcium, potassium, magnesium, and vitamin A, D, E, and K. Non-nutrient-dense foods were primary sources of fat, carbohydrate and sugar intakes and contributed >30% of energy. Traditional foods accounted for 21% of energy and >50% of protein and iron intakes. Strategies to improve weight status and nutrient intake are needed among Inuit women in this important life stage
Verification of BOUT++ by the method of manufactured solutions
BOUT++ is a software package designed for solving plasma fluid models. It has been used to simulate a wide range of plasma phenomena ranging from linear stability analysis to 3D plasma turbulence and is capable of simulating a wide range of drift-reduced plasma fluid and gyro-fluid models. A verification exercise has been performed as part of a EUROfusion Enabling Research project, to rigorously test the correctness of the algorithms implemented in BOUT++, by testing order-of-accuracy convergence rates using the Method of Manufactured Solutions (MMS). We present tests of individual components including time-integration and advection schemes, non-orthogonal toroidal field-aligned coordinate systems and the shifted metric procedure which is used to handle highly sheared grids. The flux coordinate independent approach to differencing along magnetic field-lines has been implemented in BOUT++ and is here verified using the MMS in a sheared slab configuration. Finally, we show tests of three complete models: 2-field Hasegawa-Wakatani in 2D slab, 3-field reduced magnetohydrodynamics (MHD) in 3D field-aligned toroidal coordinates, and 5-field reduced MHD in slab geometry
Flow characterisation for a validation study in high-speed aerodynamics
Validation studies are becoming increasingly relevant when investigating complex flow problems in high-speed aerodynamics. These investigations require calibration of numerical models with accurate data from the physical wind tunnel being studied. This paper presents the characterisation process for a joint experimental-computational study to investigate the streamwise corners of a Mach 2.5 channel flow. As well as checks of flow quality typically performed for phenomenological investigations, additional quantitative tests are conducted. The extra care to obtain high quality data and eliminate any systematic errors reveal useful information about the wind tunnel flow. Further important physical insights are gained from designing and conducting wind tunnel tests in conjunction with numerical simulations. Crucially, the close experimental-computational collaboration enabled the
identification of secondary flows in the sidewall boundary-layers; these strongly influence the flow in the corner regions, the target of the validation study
Recommended from our members
Numerical investigation of the bending of slenderwall-mounted cylinders in low reynolds number flow
The aim of the present studies is construction of reference data for the prediction of the bending of sensor hairs close to the wall in a boundary-layer flow. Three-dimensional direct numerical simulations (DNS) of finite cylinders in single and tandem configuration are carried out. The numerical setup is guided by a towingtank experiment performed at the Technical University of Freiberg. All numerical configurations are chosen to complement and extend the experimental work. The bending curve of the cylinders is estimated by a static approach according to 1st -order Euler-Bernoulli beam theory. Based on the forces, extrapolated from the DNS of the flow field, the influence of wall- and top-end effects and Reynolds numbers between 5 and 40 is examined more deeply. Also, varying positions of cylindrical tandem configurations in stream- and spanwise directions are investigated. The present work shows good agreement between simulation and experiment
Direct measurement of stellar angular diameters by the VERITAS Cherenkov Telescopes
The angular size of a star is a critical factor in determining its basic
properties. Direct measurement of stellar angular diameters is difficult: at
interstellar distances stars are generally too small to resolve by any
individual imaging telescope. This fundamental limitation can be overcome by
studying the diffraction pattern in the shadow cast when an asteroid occults a
star, but only when the photometric uncertainty is smaller than the noise added
by atmospheric scintillation. Atmospheric Cherenkov telescopes used for
particle astrophysics observations have not generally been exploited for
optical astronomy due to the modest optical quality of the mirror surface.
However, their large mirror area makes them well suited for such
high-time-resolution precision photometry measurements. Here we report two
occultations of stars observed by the VERITAS Cherenkov telescopes with
millisecond sampling, from which we are able to provide a direct measurement of
the occulted stars' angular diameter at the milliarcsecond scale.
This is a resolution never achieved before with optical measurements and
represents an order of magnitude improvement over the equivalent lunar
occultation method. We compare the resulting stellar radius with empirically
derived estimates from temperature and brightness measurements, confirming the
latter can be biased for stars with ambiguous stellar classifications.Comment: Accepted for publication in Nature Astronom
- …