2,423 research outputs found
Strong field dynamics with ultrashort electron wave packet replicas
We investigate theoretically electron dynamics under a VUV attosecond pulse
train which has a controlled phase delay with respect to an additional strong
infrared laser field. Using the strong field approximation and the fact that
the attosecond pulse is short compared to the excited electron dynamics, we
arrive at a minimal analytical model for the kinetic energy distribution of the
electron as well as the photon absorption probability as a function of the
phase delay between the fields. We analyze the dynamics in terms of electron
wave packet replicas created by the attosecond pulses. The absorption
probability shows strong modulations as a function of the phase delay for VUV
photons of energy comparable to the binding energy of the electron, while for
higher photon energies the absorption probability does not depend on the delay,
in line with the experimental observations for helium and argon, respectively.Comment: 14 pages, 8 figure
Herschel GASPS spectral observations of T Tauri stars in Taurus: unraveling far-infrared line emission from jets and discs
At early stages of stellar evolution young stars show powerful jets and/or
outflows that interact with protoplanetary discs and their surroundings.
Despite the scarce knowledge about the interaction of jets and/or outflows with
discs, spectroscopic studies based on Herschel and ISO data suggests that gas
shocked by jets and/or outflows can be traced by far-IR (FIR) emission in
certain sources. We want to provide a consistent catalogue of selected atomic
([OI] and [CII]) and molecular (CO, OH, and HO) line fluxes observed in
the FIR, separate and characterize the contribution from the jet and the disc
to the observed line emission, and place the observations in an evolutionary
picture. The atomic and molecular FIR (60-190 ) line emission of
protoplanetary discs around 76 T Tauri stars located in Taurus are analysed.
The observations were carried out within the Herschel key programme Gas in
Protoplanetary Systems (GASPS). The spectra were obtained with the
Photodetector Array Camera and Spectrometer (PACS). The sample is first divided
in outflow and non-outflow sources according to literature tabulations. With
the aid of archival stellar/disc and jet/outflow tracers and model predictions
(PDRs and shocks), correlations are explored to constrain the physical
mechanisms behind the observed line emission. The much higher detection rate of
emission lines in outflow sources and the compatibility of line ratios with
shock model predictions supports the idea of a dominant contribution from the
jet/outflow to the line emission, in particular at earlier stages of the
stellar evolution as the brightness of FIR lines depends in large part on the
specific evolutionary stage. [Abridged Abstract]Comment: 37 pages, 27 figures, accepted for publication in A&
Nitric Acid Particles in Cold Thick Ice Clouds Observed at Global Scale: Link with Lightning, Temperature, and Upper Tropospheric Water Vapor
Signatures of nitric acid particles (NAP) in cold thick ice clouds have been derived from satellite observations. Most NAP are detected in the Tropics (9 to 20% of clouds with T less than 202.5 K). Higher occurrences were found in the rare mid-latitudes very cold clouds. NAP occurrence increases as cloud temperature decreases and NAP are more numerous in January than July. Comparisons of NAP and lightning distributions show that lightning is the main source of the NOx, which forms NAP in cold clouds. Qualitative comparisons of NAP with upper tropospheric humidity distributions suggest that NAP play a role in the dehydration of the upper troposphere when the tropopause is colder than 195K
The Transiting Exocomets in the HD 172555 System
The Earth is thought to have formed dry, in a part of the Solar Nebula deficient in organic material, and to have acquired its organics and water through bombardment by minor bodies. Observations of this process in well-dated systems can provide insight into the probable origin and composition of the bombarding parent bodies. Transiting cometary activity has previously been reported in Ca II for the late-A member of the 241 Myr old Pictoris Moving Group member, HD 172555(Kiefer et al. 2014). We present HST STIS and COS spectra of HD 172555 demonstrating that the star has chromospheric emission and variable in falling gas features in transitions of silicon and carbon ions at times when no Fe II absorption is seen in the UV data, and no Ca II absorption is seen in contemporary optical spectra. The lack of CO absorption and stable gas absorption at the system velocity is consistent with the absence of a cold Kuiper belt analog (Riviere-Marichalar et al. 2012) in this system. The presence of infall in some species at one epoch and others at different epochs suggests that, like Pictoris, there may be more than one family of exocomets. If perturbed into star-grazing orbits by the same mechanism as for Pic, these data suggest that the wide planet frequency among A-early F stars in the PMG is at least 37.5, well above the frequency estimated for young moving groups independent of host star spectral type
Hybrid in vitro diffusion cell for simultaneous evaluation of hair and skin decontamination: temporal distribution of chemical contaminants
Most casualty or personnel decontamination studies have focused on removing contaminants from the skin. However, scalp hair and underlying skin are the most likely areas of contamination following airborne exposure to chemicals. The aim of this study was to investigate the interactions of contaminants with scalp hair and underlying skin using a hybrid in vitro diffusion cell model. The in vitro hybrid test system comprised “curtains” of human hair mounted onto sections of excised porcine skin within a modified diffusion cell. The results demonstrated that hair substantially reduced underlying scalp skin contamination and that hair may provide a limited decontamination effect by removing contaminants from the skin surface. This hybrid test system may have application in the development of improved chemical incident response processes through the evaluation of various hair and skin decontamination strategies.Peer reviewedFinal Published versio
Density correlations in ultracold atomic Fermi gases
We investigate density fluctuations in a coherent ensemble of interacting
fermionic atoms. Adapting the concept of full counting statistics, well-known
from quantum optics and mesoscopic electron transport, we study second-order as
well as higher-order correlators of density fluctuations. Using the mean-field
BCS state to describe the whole interval between the BCS limit and the BEC
limit, we obtain an exact expression for the cumulant-generating function of
the density fluctuations of an atomic cloud. In the two-dimensional case, we
obtain a closed analytical expression. Poissonian fluctuations of a molecular
condensate on the BEC side are strongly suppressed on the BCS side. The size of
the fluctuations in the BCS limit is a direct measure of the pairing potential.
We also discuss the BEC-BCS crossover of the third cumulant and the temperature
dependence of the second cumulant.Comment: 4 pages, 4 figures. To appear in Phys. Rev. A. New calculation of the
bin statistics of a free Bose gas; updated and extended bibliograph
DZ Cha: a bona fide photoevaporating disc
DZ Cha is a weak-lined T Tauri star (WTTS) surrounded by a bright
protoplanetary disc with evidence of inner disc clearing. Its narrow \Ha line
and infrared spectral energy distribution suggest that DZ Cha may be a
photoevaporating disc. We aim to analyse the DZ Cha star + disc system to
identify the mechanism driving the evolution of this object. We have analysed
three epochs of high resolution optical spectroscopy, photometry from the UV up
to the sub-mm regime, infrared spectroscopy, and J-band imaging polarimetry
observations of DZ Cha. Combining our analysis with previous studies we find no
signatures of accretion in the \Ha line profile in nine epochs covering a
time baseline of years. The optical spectra are dominated by
chromospheric emission lines, but they also show emission from the forbidden
lines [SII] 4068 and [OI] 6300 that indicate a disc outflow. The
polarized images reveal a dust depleted cavity of au in radius and two
spiral-like features, and we derive a disc dust mass limit of
M_\mathrm{dust}
80 \MJup) companions are detected down to 0\farcs07 ( au,
projected). The negligible accretion rate, small cavity, and forbidden line
emission strongly suggests that DZ Cha is currently at the initial stages of
disc clearing by photoevaporation. At this point the inner disc has drained and
the inner wall of the truncated outer disc is directly exposed to the stellar
radiation. We argue that other mechanisms like planet formation or binarity
cannot explain the observed properties of DZ Cha. The scarcity of objects like
this one is in line with the dispersal timescale ( yr) predicted
by this theory. DZ Cha is therefore an ideal target to study the initial stages
of photoevaporation.Comment: A&A in press, language corrections include
Polar Smectic Films
We report on a new experimental procedure for forming and studying polar
smectic liquid crystal films. A free standing smectic film is put in contact
with a liquid drop, so that the film has one liquid crystal/liquid interface
and one liquid crystal/air interface. This polar environment results in changes
in the textures observed in the film, including a boojum texture and a
previously unobserved spiral texture in which the winding direction of the
spiral reverses at a finite radius from its center. Some aspects of these
textures are explained by the presence of a Ksb term in the bulk elastic free
energy density that favors a combination of splay and bend deformations.Comment: 4 pages, REVTeX, 3 figures, submitted to PR
Exocomet signatures around the A-shell star Leo?
We present an intensive monitoring of high-resolution spectra of the Ca {\sc
ii} K line in the A7IV shell star Leo at very short (minutes, hours),
short (night to night), and medium (weeks, months) timescales. The spectra show
remarkable variable absorptions on timescales of hours, days, and months. The
characteristics of these sporadic events are very similar to most that are
observed toward the debris disk host star Pic, which are commonly
interpreted as signs of the evaporation of solid, comet-like bodies grazing or
falling onto the star. Therefore, our results suggest the presence of solid
bodies around Leo. To our knowledge, with the exception of Pic,
our monitoring has the best time resolution at the mentioned timescales for a
star with events attributed to exocomets. Assuming the cometary scenario and
considering the timescales of our monitoring, our results indicate that
Leo presents the richest environment with comet-like events known to date,
second only to Pic.Comment: A&A letters, proof-correcte
- …
