211 research outputs found

    The biogeography of naturalization in alien plants

    Get PDF
    Aim This paper reviews the main geographical determinants of naturalization in plants. Location Global. Methods Comparative studies of large data sets of alien floras are the main source of information on global patterns of naturalization. Results Temperate mainland regions are more invaded than tropical mainland regions but there seems to be no difference in invasibility of temperate and tropical islands. Islands are more invaded than the mainland. The number of naturalized species in temperate regions decreases with latitude and their geographical ranges increase with latitude. The number of naturalized species on islands increases with temperature. Naturalized species contribute to floristic homogenization, but the phenomenon is scale-dependent. Main conclusion Some robust patterns are evident from currently available data, but further research is needed on several aspects to advance our understanding of the biogeography of naturalization of alien plants. For example, measures of propagule pressure are needed to determine the invasibility of communities/ecosystems/regions. The patterns discussed in this paper are derived largely from numbers and proportions of naturalized species, and little is known about the proportion of introduced species that become naturalized. Further insights on naturalization rates, i.e. the proportion of aliens that successfully naturalize within regions, and on geographical and other determinants of its variation would provide us with better understanding of the invasion process. Comparative studies, and resulting generalizations, are almost exclusively based on numbers of species, but alien species differ in their impact on native biodiversity and ecosystem processes.Ctr Invas Bio

    Competition among native and invasive Phragmites australis populations: An experimental test of the effects of invasion status, genome size, and ploidy level

    Get PDF
    Among the traits whose relevance for plant invasions has recently been suggested are genome size (the amount of nuclear DNA) and ploidy level. So far, research on the role of genome size in invasiveness has been mostly based on indirect evidence by comparing species with different genome sizes, but how karyological traits influence competition at the intraspecific level remains unknown. We addressed these questions in a common-garden experiment evaluating the outcome of direct intraspecific competition among 20 populations of Phragmites australis, represented by clones collected in North America and Europe, and differing in their status (native and invasive), genome size (small and large), and ploidy levels (tetraploid, hexaploid, or octoploid). Each clone was planted in competition with one of the others in all possible combinations with three replicates in 45-L pots. Upon harvest, the identity of 21 shoots sampled per pot was revealed by flow cytometry and DNA analysis. Differences in performance were examined using relative proportions of shoots of each clone, ratios of their aboveground biomass, and relative yield total (RYT). The performance of the clones in competition primarily depended on the clone status (native vs. invasive). Measured in terms of shoot number or aboveground biomass, the strongest signal observed was that North American native clones always lost in competition to the other two groups. In addition, North American native clones were suppressed by European natives to a similar degree as by North American invasives. North American invasive clones had the largest average shoot biomass, but only by a limited, nonsignificant difference due to genome size. There was no effect of ploidy on competition. Since the North American invaders of European origin are able to outcompete the native North American clones, we suggest that their high competitiveness acts as an important driver in the early stages of their invasion

    Scoring environmental and socioeconomic impacts of alien plants invasive in Europe

    Get PDF
    The categorization of invasive alien species based on their impact is an important way of improving the management of biological invasions. The impact of 128 alien species of plants in Europe was evaluated using the Generic Impact Scoring System (GISS) originally developed for mammals. Based on information in the literature their environmental and socioeconomic impacts were assessed and assigned to one of six different categories. In each category, the impact was classified on a five-degree scale, which reflects the impact intensity. To identify species with the greatest impacts, we used the maximum score recorded in each category and their sums. Data from the whole invaded range were considered, which resulted in scoring the potential impact of each species, not necessarily currently realized in Europe. Environmental impacts are most often manifested via competition with native species (recorded for 83 % of the species), while socioeconomic impacts are associated mostly with human health (78 %). The sums of environmental and socioeconomic impacts were significantly correlated, which indicates that the same suite of species traits is associated with both types of impacts. In terms of plant life forms, annual plants have on average lower environmental impacts than perennial plants, and aquatic species have a higher socioeconomic impact than other life forms. Applying the GISS to plants, the most species-rich taxonomic group of alien organisms in Europe, is an important step towards providing managers and policymakers with a robust tool for identifying and prioritizing alien species with the highest impact

    Niche-based modelling as a tool for predicting the risk of alien plant invasions at a global scale

    Get PDF
    Predicting the probability of successful establishment of plant species by matching climatic variables has considerable potential for incorporation in early warning systems for the management of biological invasions. We select South Africa as a model source area of invasions worldwide because it is an important exporter of plant species to other parts of the world because of the huge international demand for indigenous flora from this biodiversity hotspot. We first mapped the five ecoregions that occur both in South Africa and other parts of the world, but the very coarse definition of the ecoregions led to unreliable results in terms of predicting invasible areas. We then determined the bioclimatic features of South Africa's major terrestrial biomes and projected the potential distribution of analogous areas throughout the world. This approach is much more powerful, but depends strongly on how particular biomes are defined in donor countries. Finally, we developed bioclimatic niche models for 96 plant taxa (species and subspecies) endemic to South Africa and invasive elsewhere, and projected these globally after successfully evaluating model projections specifically for three well-known invasive species (Carpobrotus edulis, Senecio glastifolius, Vellereophyton dealbatum) in different target areas. Cumulative probabilities of climatic suitability show that high-risk regions are spatially limited globally but that these closely match hotspots of plant biodiversity. These probabilities are significantly correlated with the number of recorded invasive species from South Africa in natural areas, emphasizing the pivotal role of climate in defining invasion potential. Accounting for potential transfer vectors (trade and tourism) significantly adds to the explanatory power of climate suitability as an index of invasibility. The close match that we found between the climatic component of the ecological habitat suitability and the current pattern of occurrence of South Africa alien species in other parts of the world is encouraging. If species' distribution data in the donor country are available, climatic niche modelling offers a powerful tool for efficient and unbiased first-step screening. Given that eradication of an established invasive species is extremely difficult and expensive, areas identified as potential new sites should be monitored and quarantine measures should be adopted.Ctr Invas Bio

    Predicting incursion of plant invaders into Kruger National Park, South Africa : the interplay of general drivers and species-specific factors

    Get PDF
    The original article is available at www.plosone.orgBackground: Overcoming boundaries is crucial for incursion of alien plant species and their successful naturalization and invasion within protected areas. Previous work showed that in Kruger National Park, South Africa, this process can be quantified and that factors determining the incursion of invasive species can be identified and predicted confidently. Here we explore the similarity between determinants of incursions identified by the general model based on a multispecies assemblage, and those identified by species-specific models. We analyzed the presence and absence of six invasive plant species in 1.061.5 km segments along the border of the park as a function of environmental characteristics from outside and inside the KNP boundary, using two data-mining techniques: classification trees and random forests. Principal Findings: The occurrence of Ageratum houstonianum, Chromolaena odorata, Xanthium strumarium, Argemone ochroleuca, Opuntia stricta and Lantana camara can be reliably predicted based on landscape characteristics identified by the general multispecies model, namely water runoff from surrounding watersheds and road density in a 10 km radius. The presence of main rivers and species-specific combinations of vegetation types are reliable predictors from inside the park. Conclusions: The predictors from the outside and inside of the park are complementary, and are approximately equally reliable for explaining the presence/absence of current invaders; those from the inside are, however, more reliable for predicting future invasions. Landscape characteristics determined as crucial predictors from outside the KNP serve as guidelines for management to enact proactive interventions to manipulate landscape features near the KNP to prevent further incursions. Predictors from the inside the KNP can be used reliably to identify high-risk areas to improve the costeffectiveness of management, to locate invasive plants and target them for eradication.Publisher's versio

    Phylogeography of an endangered disjunct herb: long-distance dispersal, refugia and colonization routes

    Get PDF
    Quaternary glacial cycles appear to have had a consistent role in shaping the genetic diversity and structure of plant species. Despite the unusual combination of the characteristics of the western Mediterranean– Macaronesian area, there are no studies that have specifically examined the effects of palaeoclimatic and palaeogeographic factors on the genetic composition and structure of annual herbs. Astragalus edulis is a disjunct endemic found in the easternmost Canary Islands and the semi-arid areas of north-eastern Africa and south-eastern Iberian Peninsula. This endangered species shows no evident adaptations to long-distance dispersal. Amplified fragment length polymorphism (AFLP) data and plastid DNA sequences were analysed from a total of 360 individuals distributed throughout the range of this species. The modelled potential distribution of A. edulis under current conditions was projected over the climatic conditions of the Last Interglacial (130 ka BP) and Last Glacial Maximum (21 ka BP) to analyse changes in habitat suitability and to look for associations between the modelling and genetic results. Amplified fragment length polymorphism analysis showed clear phylogeographic structure with four distinct genetic clusters. Approximate Bayesian computation (ABC) models based on plastid DNA sequences indicated a Middle Pleistocene long-distance dispersal event as the origin of the populations of the Canary Islands. The models also suggested south-western Morocco as the ancestral area for the species, as well as subsequent colonization of north-eastern Morocco and the Iberian Peninsula. The data compiled indicated the possibility of the presence of refuge areas at favourable locations around the High Atlas and Anti-Atlas mountain ranges. Moreover, palaeodistribution models strongly support the events inferred by ABC modelling and show the potential distribution of the species in the past, suggesting a putative colonization route.This work has been financed by the Spanish Ministerio de Ciencia e Innovación through the projects CGL2012- 32574 and REN2003-09427, as well as by the Andalusian Consejería de Innovación, Ciencia y Tecnología through the project RNM1067. The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript

    Climate change will increase naturalization risk from garden plants in Europe

    Get PDF
    Aim: Plant invasions often follow initial introduction with a considerable delay. The current non-native flora of a region may hence contain species that are not yet naturalized but may become so in the future, especially if climate change lifts limitations on species spread. In Europe, non-native garden plants represent a huge pool of potential future invaders. Here, we evaluate the naturalization risk from this species pool and how it may change under a warmer climate. Location Europe. Methods: We selected all species naturalized anywhere in the world but not yet in Europe from the set of non-native European garden plants. For this subset of 783 species, we used species distribution models to assess their potential European ranges under different scenarios of climate change. Moreover, we defined geographical hotspots of naturalization risk from those species by combining projections of climatic suitability with maps of the area available for ornamental plant cultivation. Results: Under current climate, 165 species would already find suitable conditions in > 5% of Europe. Although climate change substantially increases the potential range of many species, there are also some that are predicted to lose climatically suitable area under a changing climate, particularly species native to boreal and Mediterranean biomes. Overall, hotspots of naturalization risk defined by climatic suitability alone, or by a combination of climatic suitability and appropriate land cover, are projected to increase by up to 102% or 64%, respectively. Main conclusions: Our results suggest that the risk of naturalization of European garden plants will increase with warming climate, and thus it is very likely that the risk of negative impacts from invasion by these plants will also grow. It is therefore crucial to increase awareness of the possibility of biological invasions among horticulturalists, particularly in the face of a warming climate

    Beta diversity of urban floras among European and non-European cities.

    Get PDF
    Aim Cities represent an ideal study system for assessing how intensive land-use change and biotic interchange have altered beta diversity at broad geographic extents. Here we test the hypothesis that floras in cities located in disparate regions of the globe are being homogenized by species classified as invasive (naturalized species that have spread over a large area) or as a European archaeophyte (species introduced into Europe before ad 1500 from the Mediterranean Basin).We also test the prediction that the global influences of European activities (colonization, agriculture, commerce) have supported this outcome. Location One hundred and ten cities world-wide. Methods We examined the richness and composition of urban floras among European (n = 85) and non-European cities (n = 25) for species classified as native or non-native, or further classified as European archaeophyte or invasive. We modelled how geographic, climatic and anthropogenic factors were related to compositional similarity between European and non-European cities. Results We found that most plants in the cities we examined, particularly non- European cities, were native and unique to each city. Non-native species were similarly unique, but occurred in much lower proportions relative to natives. Although European archaeophytes and invasive species also occurred in lower proportions, they had similar compositions among cities. European archaeophytes were most prevalent in European cities, but were most similar among non-European cities. Contrasting European and non-European cities, geography and climate were most relevant for native and invasive species, whereas climate and agriculture were most relevant for European archaeophytes. Main conclusions Cities in disparate regions of the globe retain regionally distinct native and non-native plant assemblages, while invasive species, and especially European archaeophytes, were associated with lower beta diversity among cities. These findings suggest that intensive land-use change and biotic interchange, shaped through European influences, have had a world-wide effect on the beta diversity of urban plant assemblages
    • …
    corecore