708 research outputs found

    Increase of the Energy Necessary to Probe Ultraviolet Theories Due to the Presence of a Strong Magnetic Field

    Full text link
    We use the gauge gravity correspondence to study the renormalization group flow of a double trace fermionic operator in a quark-gluon plasma subject to the influence of a strong magnetic field and compare it with the results for the case at zero temperature and no magnetic field, where the flow between two fixed points is observed. Our results show that the energy necessary to access the physics of the ultraviolet theory increases with the intensity of the magnetic field under which the processes happen. We provide arguments to support that this increase is scheme independent, and to exhibit further evidence we do a very simple calculation showing that the dimensional reduction expected in the gauge theory in this scenario is effective up to an energy scale that grows with the strength of such a background field. We also show that independently of the renormalization scheme, the coupling of the double trace operators in the ultraviolet fixed point increases with the intensity of the background field. These effects combined can change both, the processes that are expected to be involved in a collision experiment at a given energy and the azimuthal anisotropy of the measurements resulting of them.Comment: 23 pages, 10 figures. Added section about renormalization scheme independenc

    1RXS J180408.9-342058: an ultra compact X-ray binary candidate with a transient jet

    Get PDF
    We present a detailed NIR/optical/UV study of the transient low mass X-ray binary 1RXS J180408.9-342058 performed during its 2015 outburst, aimed at determining the nature of its companion star. We obtained three optical spectra at the 2.1 m San Pedro Martir Observatory telescope (Mexico). We performed optical and NIR photometric observations with both the REM telescope and the New Technology Telescope (NTT) in La Silla. We obtained optical and UV observations from the Swift archive. Finally, we performed optical polarimetry of the source by using the EFOSC2 instrument mounted on the NTT. The optical spectrum of the source is almost featureless since the hydrogen and He I emissions lines, typically observed in LMXBs, are not detected. Similarly, carbon and oxygen lines are neither observed. We marginally detect the He II 4686 AA emission line, suggesting the presence of helium in the accretion disc. No significant optical polarisation level was observed. The lack of hydrogen and He I emission lines in the spectrum implies that the companion is likely not a main sequence star. Driven by the tentative detection of the He II 4686 AA emission line, we suggest that the system could harbour a helium white dwarf. If this is the case, 1RXS J180408.9-342058 would be an ultra-compact X-ray binary. By combining an estimate of the mass accretion rate together with evolutionary tracks for a He white dwarf, we obtain a tentative orbital period of ~ 40 min. On the other hand, we also built the NIR-optical-UV spectral energy distribution (SED) of the source at two different epochs. One SED was gathered when the source was in the soft X-ray state, and it is consistent with the presence of a single thermal component. The second SED, obtained when the source was in the hard X-ray state, shows a thermal component together with a tail in the NIR, likely indicating the presence of a (transient) jet.Comment: 8 pages, 5 figures, 4 tables. Accepted for publication in Astronomy & Astrophysics (Section 7

    A model-based performance test for forest classifiers on remote-sensing imagery

    Get PDF
    Ambiguity between forest types on remote-sensing imagery is a major cause of errors found in accuracy assessments of forest inventorymaps. This paper presents a methodology, based on forest plot inventory, ground measurements and simulated imagery, for systematically quantifying these ambiguities in the sense of the minimum distance (MD), maximum likelihood (ML), and frequency-based (FB) classifiers. The method is tested with multi-spectral IKONOS images acquired on areas containing six major communities (oak, pine, fir, primary and secondary high tropical forests, and avocado plantation) of the National Forest Inventory (NFI) map in Mexico. A structural record of the canopy and optical measurements (leaf area index and soil reflectance) were performed on one plot of each class. Intra-class signal variation was modelled using the Discrete Anisotropic Radiative Transfer (DART) simulator of remote-sensing images. Atmospheric conditions were inferred from ground measurements on reference surfaces and leaf optical properties of each forest type were derived from the IKONOS forest signal. Next, all forest types were simulated, using a common environmental configuration, in order to quantify similarity among all forest types, according to MD, ML and FB classifiers. Classes were considered ambiguous when their dissimilarity was smaller than intra-class signal variation. DART proved useful in approximating the pixel value distribution and the ambiguity pattern measured on real forest imagery. In the case study, the oak forest and the secondary tropical forest were both distinguishable from all other classes using an MD classifier in a 25 m window size, whereas pine and primary tropical forests were ambiguous with three other classes using MD. By contrast, only two pairs of classes were found ambiguous for the ML classifier and only one for the FB classifier in that same window size. The avocado plantation was confounded with the primary tropical forest for all classifiers, presumably because the reflectance of both types of forest is governed by a deep canopy and a similar shadow area. We confronted the results of this study with the confusion matrix from the accuracy assessment of the NFI map. An asset of this model-basedmethod is its applicability to a variety of sensor types, eco-zones and class definitions

    A Common Software Configuration Management System for CERN SPS and LEP Accelerators and Technical Services

    Get PDF
    Software configuration management activities are crucial to assure the integrity of current operational and the quality of new software either being developed at CERN or outsourced. The functionality of the present management system became insufficient with large maintenance overheads. In order to improve our situation, a new software configuration management system has been set up. It is based on Razor, a commercial tool, which supports the management of file versions and operational software releases, along with integrated problem reporting capabilities. In addition to the basic tool functionality, automated procedures were custom made, for the installation and distribution of operational software. Policies were developed and applied over the software development life cycle to provide visibility and control. The system ensures that, at all times, the status and location of all deliverable versions are known, the state of shared objects is carefully controlled and unauthorised changes prevented. It provides a managed environment for software development, in various domains of the SPS and LEP CERN accelerators, and the technical services, automating code and lifecycle management. This paper outlines the reasons for selecting the chosen tool, the implementation of the system, the problems solved and the final goals achieved

    Using LiDAR to assess the effect of fire and floods on upland peat bogs, Waterfall Gully, Mount Lofty Ranges, South Australia

    Get PDF
    A flood exceeding the 100 year average recurrence interval in November 2005 led to the failure of an upland peat bog in Waterfall Gully. The area is prone to severe bushfire and flood events and the control dam at the base of First Falls was filled with sediment sourced from Wilson Bog. A resistant quartzite bar at Fourth Falls has formed a natural constriction point against which burnt logs and debris have collected following previous fire events forming a natural dam resulting in sediment/peat accumulation upstream. The failure of the bog was inevitable as the vegetative material in the log-jam progressively weakened and rotted. Intense flooding triggered the failure but it was augmented by the build up of a critical mass of sediment upstream of the restriction point. The downstream force of the flood waters and the weight of the saturated bog sediments was enough to overcome the basal frictional forces resulting in slumping and headward erosion. LiDAR data clearly shows an erosion channel scoured out by the flood. Approximately 5000 m3 of sediment (-10,100 tonnes) was washed downstream. LiDAR coupled with a tri-spectral scanner has the capacity to identify other upland peat bogs due to their high NDVI value and assess their stability on steep slopes or narrow valleys. Fire is another risk to the stability of these bogs as it has the potential to remove binding vegetation and expose unconsolidated sediments to erosion during subsequent rain events. Groundsurface and vegetation surface DEM\u27s generated from LiDAR combined with NDVI maps derived from a tri-spectral scanner provide an ideal tool to monitor and assess the risk of slumping in other upland peat bogs

    Framework for classroom student grading with open-ended questions: A text-mining approach

    Get PDF
    The purpose of this paper is to present a framework based on text-mining techniques to support teachers in their tasks of grading texts, compositions, or essays, which form the answers to open-ended questions (OEQ). The approach assumes that OEQ must be used as a learning and evaluation instrument with increasing frequency. Given the time-consuming grading process for those questions, their large-scale use is only possible when computational tools can help the teacher. This work assumes that the grading decision is entirely a teacher’s task responsibility, not the result of an automatic grading process. In this context, the teacher is the author of questions to be included in the tests, administration and results assessment, the entire cycle for this process being noticeably short: a few days at most. An attempt is made to address this problem. The method is entirely exploratory, descriptive and data-driven, the only data assumed as inputs being the texts of essays and compositions created by the students when answering OEQ for a single test on a specific occasion. Typically, the process involves exceedingly small data volumes measured by the power of current home computers, but big data when compared with human capabilities. The general idea is to use software to extract useful features from texts, perform lengthy and complex statistical analyses and present the results to the teacher, who, it is believed, will combine this information with his or her knowledge and experience to make decisions on mark allocation. A generic path model is formulated to represent that specific context and the kind of decisions and tasks a teacher should perform, the estimated results being synthesised using graphic displays. The method is illustrated by analysing three corpora of 126 texts originating in three different real learning contexts, time periods, educational levels and disciplines.info:eu-repo/semantics/publishedVersio

    A radiating dyon solution

    Full text link
    We give a non-static exact solution of the Einstein-Maxwell equations (with null fluid), which is a non-static magnetic charge generalization to the Bonnor-Vaidya solution and describes the gravitational and electromagnetic fields of a nonrotating massive radiating dyon. In addition, using the energy-momentum pseudotensors of Einstein and Landau and Lifshitz we obtain the energy, momentum, and power output of the radiating dyon and find that both prescriptions give the same result.Comment: 9 pages, LaTe

    String Theory and Quantum Chromodynamics

    Full text link
    I review recent progress on the connection between string theory and quantum chromodynamics in the context of the gauge/gravity duality. Emphasis is placed on conciseness and conceptual aspects rather than on technical details. Topics covered include the large-Nc limit of gauge theories, the gravitational description of gauge theory thermodynamics and hydrodynamics, and confinement/deconfinement thermal phase transitions.Comment: 38 pages, 24 figures. Lectures given at the RTN Winter School on "Strings, Supergravity and Gauge Theories" at CERN on January 15-19, 200

    An international network to monitor the structure, composition and dynamics of Amazonian forests (RAINFOR)

    Get PDF
    The Amazon basin is likely to be increasingly affected by environmental changes: higher temperatures, changes in precipitation, CO2 fertilization and habitat fragmentation. To examine the important ecological and biogeochemical consequences of these changes, we are developing an international network, RAINFOR, which aims to monitor forest biomass and dynamics across Amazonia in a co-ordinated fashion in order to understand their relationship to soil and climate. The network will focus on sample plots established by independent researchers, some providing data extending back several decades. We will also conduct rapid transect studies of poorly monitored regions. Field expeditions analysed local soil and plant properties in the first phase (2001–2002). Initial results suggest that the network has the potential to reveal much information on the continental-scale relations between forest and environment. The network will also serve as a forum for discussion between researchers, with the aim of standardising sampling techniques and methodologies that will enable Amazonian forests to be monitored in a coherent manner in the coming decades
    • …
    corecore