387 research outputs found

    Enriching Group Communication through Applied Improvisation and Meditation

    Get PDF
    poster abstractThe ability to mindfully listen to others and oneself fosters the healthiest environment for group discussion. This study explores how applied improvisation and meditation might enhance group communication. Applied improvisation is the use of principles and practices of improvisation in nontheatrical settings. One of the many benefits of applied improvisation is that it teaches students how to fully listen to what others are saying. Meditation is the practice of consciously turning inwards and focusing the thoughts for reflective purposes. Meditation teaches students mindfulness and the ability to listen to their inner monologue. Together applied improvisation and meditation builds community, encourages risk taking, removes judgment of self and others, and promotes acceptance through its joint focus on holistic listening. These concepts will be applied to group discussions/reflections occurring on an educationally-meaningful service trip (alternative spring break) to the Republic of Trinidad and Tobago during spring 2015. This is preliminary research using a mixed methods design. First, self-rating questionnaires will be given to the participants. As a participant observer, I will record notes immediately after each reflection session. Finally, qualitative interviews will be conducted the week immediately following the trip with a former trip leader and former trip participants who were also on this specific trip. Mixed methods, or pragmatic research, allows for both quantitative and qualitative data to be gathered in a complementary way. The results will be gathered at the conclusion of the spring break trip. Our anticipated results are that the quality of the group discussion will be enhanced for a safer and more enriching learning environment for participants. If so, these methods can be refined and applied in future service-learning experiences

    A compositional breakage equation for wheat milling

    Get PDF
    The compositional breakage equation is derived, in which the distributions of botanical components following milling of wheat are defined in terms of compositional breakage functions and concentration functions. The forms of the underlying functions are determined using experimental data for Outer Pericarp, Intermediate Layer, Aleurone and Starchy Endosperm generated from spectroscopic analysis of milled fractions of a hard and a soft wheat milled under Sharp-to-Sharp (S-S) and Dull-to-Dull (D-D) dispositions. For the hard Mallacca wheat, the Outer Pericarp, Intermediate Layer and Aleurone compositions mostly varied with particle size in similar ways, consistent with these layers fusing together as “bran” and breaking together, although with possibly a subtle difference around the production of very fine particles under D-D milling. By contrast, for the soft Consort wheat, Outer Pericarp, Intermediate Layer and Aleurone were distributed in broken particles very differently, particularly under D-D milling, suggesting a different breakage mechanism associated with differences in the mechanical properties and adhesion of the bran layers. These new insights into the nature of wheat breakage and the contributions of the component tissues could have implications for wheat breeding and flour mill operation

    Alterations of antitumor and metabolic responses in L5178Y-R lymphoma-bearing mice after only 30-minute daily chronic stress exposure

    No full text
    Aim: In stress research, reducing times of stress induction may contribute to improving the well-being of experimental animals, especially in cancer models, already under physiological distress. To support this idea, we evaluated the effects of a short-timed stress protocol on endocrine, metabolic and immune indicators in mice bearing the L5178Y-R lymphoma. Materials and Methods: A 30-minute daily stress protocol was applied for 28 days to healthy and lymphoma-bearing BALB/c mice; body weight, plasma levels of corticosterone, norepinephrine, Th1/Th2 cytokines, insulin, and leptin, were measured. Results: We found a 12% significant decrease in body weight in non-tumor bearing mice under stress (p < 0.007). The disruption of weight evolution was accompanied by a stress induced 85% decrease in plasmatic leptin (p < 0.01) and total reduction of insulin. Tumor burden alone was associated to an increase in more than two-fold of plasmatic levels of norepinephrine (p < 0.008). Neither stress nor tumor or their combination, resulted in an elevation of systemic IL-6. IFN-γ levels were 20 times higher in lymphoma-bearing animals when compared with non-tumor bearing mice (p < 0.01); however, under stress, this response was reduced by half, indicating a suppressing effect of chronic stress on the antitumor immune response. Conclusion: A short-timed stress induction is enough to cause significant alterations in the metabolism and immunity of healthy and tumor-bearing mice, supporting the use of short-timed protocols as an efficient way to induce chronic stress that also considers concerns regarding the well-being of experimental animals in biomedical research

    An introduction to the Australian and New Zealand flux tower network - OzFlux

    Get PDF
    Published: 31 October 2016OzFlux is the regional Australian and New Zealand flux tower network that aims to provide a continental-scale national research facility to monitor and assess trends, and improve predictions, of Australia's terrestrial biosphere and climate. This paper describes the evolution, design, and current status of OzFlux as well as provides an overview of data processing. We analyse measurements from all sites within the Australian portion of the OzFlux network and two sites from New Zealand. The response of the Australian biomes to climate was largely consistent with global studies except that Australian systems had a lower ecosystem water-use efficiency. Australian semi-arid/arid ecosystems are important because of their huge extent (70 %) and they have evolved with common moisture limitations. We also found that Australian ecosystems had a similar radiation-use efficiency per unit leaf area compared to global values that indicates a convergence toward a similar biochemical efficiency. The two New Zealand sites represented extremes in productivity for a moist temperate climate zone, with the grazed dairy farm site having the highest GPP of any OzFlux site (2620 gC m⁻² yr⁻¹) and the natural raised peat bog site having a very low GPP (820 gC m⁻² yr⁻¹). The paper discusses the utility of the flux data and the synergies between flux, remote sensing, and modelling. Lastly, the paper looks ahead at the future direction of the network and concludes that there has been a substantial contribution by OzFlux, and considerable opportunities remain to further advance our understanding of ecosystem response to disturbances, including drought, fire, land-use and land-cover change, land management, and climate change, which are relevant both nationally and internationally. It is suggested that a synergistic approach is required to address all of the spatial, ecological, human, and cultural challenges of managing the delicately balanced ecosystems in Australasia.Jason Beringer ... Wayne Meyer ... et al

    An affordable, quality-assured community-based system for high-resolution entomological surveillance of vector mosquitoes that reflects human malaria infection risk patterns.

    Get PDF
    ABSTRACT: BACKGROUND: More sensitive and scalable entomological surveillance tools are required to monitor low levels of transmission that are increasingly common across the tropics, particularly where vector control has been successful. A large-scale larviciding programme in urban Dar es Salaam, Tanzania is supported by a community-based (CB) system for trapping adult mosquito densities to monitor programme performance. Methodology An intensive and extensive CB system for routine, longitudinal, programmatic surveillance of malaria vectors and other mosquitoes using the Ifakara Tent Trap (ITT-C) was developed in Urban Dar es Salaam, Tanzania, and validated by comparison with quality assurance (QA) surveys using either ITT-C or human landing catches (HLC), as well as a cross-sectional survey of malaria parasite prevalence in the same housing compounds. RESULTS: Community-based ITT-C had much lower sensitivity per person-night of sampling than HLC (Relative Rate (RR) [95% Confidence Interval (CI)] = 0.079 [0.051, 0.121], P < 0.001 for Anopheles gambiae s.l. and 0.153 [0.137, 0.171], P < 0.001 for Culicines) but only moderately differed from QA surveys with the same trap (0.536 [0.406,0.617], P = 0.001 and 0.747 [0.677,0.824], P < 0.001, for An. gambiae or Culex respectively). Despite the poor sensitivity of the ITT per night of sampling, when CB-ITT was compared with QA-HLC, it proved at least comparably sensitive in absolute terms (171 versus 169 primary vectors caught) and cost-effective (153USversus187US versus 187US per An. gambiae caught) because it allowed more spatially extensive and temporally intensive sampling (4284 versus 335 trap nights distributed over 615 versus 240 locations with a mean number of samples per year of 143 versus 141). Despite the very low vectors densities (Annual estimate of about 170 An gambiae s.l bites per person per year), CB-ITT was the only entomological predictor of parasite infection risk (Odds Ratio [95% CI] = 4.43[3.027,7. 454] per An. gambiae or Anopheles funestus caught per night, P =0.0373). Discussion and conclusion CB trapping approaches could be improved with more sensitive traps, but already offer a practical, safe and affordable system for routine programmatic mosquito surveillance and clusters could be distributed across entire countries by adapting the sample submission and quality assurance procedures accordingly

    Insights into the aerodynamic versus radiometric surface temperature debate in thermal-based evaporation modeling

    Get PDF
    Global evaporation monitoring from Earth observation thermal infrared satellite missions is historically challenged due to the unavailability of any direct measurements of aerodynamic temperature. State-of-the-art one-source evaporation models use remotely sensed radiometric surface temperature as a substitute for the aerodynamic temperature and apply empirical corrections to accommodate for their inequality. This introduces substantial uncertainty in operational drought mapping over complex landscapes. By employing a non-parametric model, we show that evaporation can be directly retrieved from thermal satellite data without the need of any empirical correction. Independent evaluation of evaporation in a broad spectrum of biome and aridity yielded statistically significant results when compared with eddy covariance observations. While our simplified model provides a new perspective to advance spatio-temporal evaporation mapping from any thermal remote sensing mission, the direct retrieval of aerodynamic temperature also generates the highly required insight on the critical role of biophysical interactions in global evaporation research

    Insights Into the Aerodynamic Versus Radiometric Surface Temperature Debate in Thermal-Based Evaporation Modeling

    Get PDF
    Global evaporation monitoring from Earth observation thermal infrared satellite missions is historically challenged due to the unavailability of any direct measurements of aerodynamic temperature. State-of-the-art one-source evaporation models use remotely sensed radiometric surface temperature as a substitute for the aerodynamic temperature and apply empirical corrections to accommodate for their inequality. This introduces substantial uncertainty in operational drought mapping over complex landscapes. By employing a non-parametric model, we show that evaporation can be directly retrieved from thermal satellite data without the need of any empirical correction. Independent evaluation of evaporation in a broad spectrum of biome and aridity yielded statistically significant results when compared with eddy covariance observations. While our simplified model provides a new perspective to advance spatio-temporal evaporation mapping from any thermal remote sensing mission, the direct retrieval of aerodynamic temperature also generates the highly required insight on the critical role of biophysical interactions in global evaporation research

    Severe malnutrition with and without HIV-1 infection in hospitalised children in Kampala, Uganda: differences in clinical features, haematological findings and CD4(+ )cell counts

    Get PDF
    BACKGROUND: The aim of this study was to describe the clinical features, haematological findings and CD4(+ )and CD8(+ )cell counts of severely malnourished children in relation to human immunodeficiency virus (HIV) infection. METHODS: The study was conducted in the paediatric wards of Mulago hospital, which is Uganda's national referral and teaching hospital. We studied 315 severely malnourished children (presence of oedema and/or weight-for-height: z-score < -3) and have presented our findings. At admission, the CD4(+ )and CD8(+ )cells were measured by the flow cytometry and HIV serology was confirmed by Enzyme linked Immunoassay for children >18 months of age, and RNA PCR was performed for those ≤18 months. Complete blood count, including differential counts, was determined using a Beckman Coulter counter. RESULTS: Among the 315 children, 119 (38%) were female; the median age of these children was 17 months (Interquartile range 12–24 months), and no difference was observed in the HIV status with regard to gender or age. The children showed a high prevalence of infections: pneumonia (68%), diarrhoea (38%), urinary tract infection (26%) and bacteraemia (18%), with no significant difference with regard to the HIV status (HIV-positive versus HIV-negative children). However, the HIV-positive children were more likely to have persistent diarrhoea than the HIV-uninfected severely malnourished children (odds ratio (OR) 2.0, 95% confidence interval (CI) 1.2–3.6). When compared with the HIV-negative children, the HIV-positive children showed a significantly lower median white blood cell count (10700 versus 8700) and lymphocyte count (4033 versus 2687). The CD4(+ )cell percentages were more likely to be lower in children with non-oedematous malnutrition than in those with oedematous malnutrition even after controlling for the HIV infection. The novel observation of this study is that the CD4(+ )percentages in both HIV-positive and HIV-negative children without oedema were lower that those in children with oedema. These observations appear to imply that the development of oedema requires a certain degree of immunocompetence, which is an interesting clue to the pathophysiology of oedema in severe malnutrition

    High-sensitivity AC-charge detection with a MHz-frequency fluxonium qubit

    Full text link
    Owing to their strong dipole moment and long coherence times, superconducting qubits have demonstrated remarkable success in hybrid quantum circuits. However, most qubit architectures are limited to the GHz frequency range, severely constraining the class of systems they can interact with. The fluxonium qubit, on the other hand, can be biased to very low frequency while being manipulated and read out with standard microwave techniques. Here, we design and operate a heavy fluxonium with an unprecedentedly low transition frequency of 1.8 MHz1.8~\mathrm{MHz}. We demonstrate resolved sideband cooling of the ``hot'' qubit transition with a final ground state population of 97.7 %97.7~\%, corresponding to an effective temperature of 23 μK23~\mu\mathrm{K}. We further demonstrate coherent manipulation with coherence times T1=34 μsT_1=34~\mu\mathrm{s}, T2=39 μsT_2^*=39~\mu\mathrm{s}, and single-shot readout of the qubit state. Importantly, by directly addressing the qubit transition with a capacitively coupled waveguide, we showcase its high sensitivity to a radio-frequency field. Through cyclic qubit preparation and interrogation, we transform this low-frequency fluxonium qubit into a frequency-resolved charge sensor. This method results in a charge sensitivity of 33 μe/Hz33~\mu\mathrm{e}/\sqrt{\mathrm{Hz}}, or an energy sensitivity (in joules per hertz) of 2.8 2.8~\hbar. This method rivals state-of-the-art transport-based devices, while maintaining inherent insensitivity to DC charge noise. The high charge sensitivity combined with large capacitive shunt unlocks new avenues for exploring quantum phenomena in the 110 MHz1-10~\mathrm{MHz} range, such as the strong-coupling regime with a resonant macroscopic mechanical resonator
    corecore