18 research outputs found

    Low prevalence, quasi-stationarity and power-law distribution in a model of spreading

    Full text link
    Understanding how contagions (information, infections, etc) are spread on complex networks is important both from practical as well as theoretical point of view. Considerable work has been done in this regard in the past decade or so. However, most models are limited in their scope and as a result only capture general features of spreading phenomena. Here, we propose and study a model of spreading which takes into account the strength or quality of contagions as well as the local (probabilistic) dynamics occurring at various nodes. Transmission occurs only after the quality-based fitness of the contagion has been evaluated by the local agent. The model exhibits quality-dependent exponential time scales at early times leading to a slowly evolving quasi-stationary state. Low prevalence is seen for a wide range of contagion quality for arbitrary large networks. We also investigate the activity of nodes and find a power-law distribution with a robust exponent independent of network topology. Our results are consistent with recent empirical observations.Comment: 7 pages, 8 figures. (Submitted

    Diverse strategic identities induce dynamical states in evolutionary games

    Full text link
    Evolutionary games provide the theoretical backbone for many aspects of our social life: from cooperation to crime, from climate inaction to imperfect vaccination and epidemic spreading, from antibiotics overuse to biodiversity preservation. An important, and so far overlooked, aspect of reality is the diverse strategic identities of individuals. While applying the same strategy to all interaction partners may be an acceptable assumption for simpler forms of life, this fails to account} for the behavior of more complex living beings. For instance, we humans act differently around different people. Here we show that allowing individuals to adopt different strategies with different partners yields a very rich evolutionary dynamics, including time-dependent coexistence of cooperation and defection, system-wide shifts in the dominant strategy, and maturation in individual choices. Our results are robust to variations in network type and size, and strategy updating rules. Accounting for diverse strategic identities thus has far-reaching implications in the mathematical modeling of social games.Comment: 9 pages, 4 figure

    Canonical horizontal visibility graphs are uniquely determined by their degree sequence

    Get PDF
    Horizontal visibility graphs (HVGs) are graphs constructed in correspondence with number sequences that have been introduced and explored recently in the context of graph-theoretical time series analysis. In most of the cases simple measures based on the degree sequence (or functionals of these such as entropies over degree and joint degree distributions) appear to be highly informative features for automatic classification and provide nontrivial information on the associated dynam- ical process, working even better than more sophisticated topological metrics. It is thus an open question why these seemingly simple measures capture so much information. Here we prove that, under suitable conditions, there exist a bijection between the adjacency matrix of an HVG and its degree sequence, and we give an explicit construction of such bijection. As a consequence, under these conditions HVGs are unigraphs and the degree sequence fully encapsulates all the information of these graphs, thereby giving a plausible reason for its apparently unreasonable effectiveness

    Markov Properties of Electrical Discharge Current Fluctuations in Plasma

    Full text link
    Using the Markovian method, we study the stochastic nature of electrical discharge current fluctuations in the Helium plasma. Sinusoidal trends are extracted from the data set by the Fourier-Detrended Fluctuation analysis and consequently cleaned data is retrieved. We determine the Markov time scale of the detrended data set by using likelihood analysis. We also estimate the Kramers-Moyal's coefficients of the discharge current fluctuations and derive the corresponding Fokker-Planck equation. In addition, the obtained Langevin equation enables us to reconstruct discharge time series with similar statistical properties compared with the observed in the experiment. We also provide an exact decomposition of temporal correlation function by using Kramers-Moyal's coefficients. We show that for the stationary time series, the two point temporal correlation function has an exponential decaying behavior with a characteristic correlation time scale. Our results confirm that, there is no definite relation between correlation and Markov time scales. However both of them behave as monotonic increasing function of discharge current intensity. Finally to complete our analysis, the multifractal behavior of reconstructed time series using its Keramers-Moyal's coefficients and original data set are investigated. Extended self similarity analysis demonstrates that fluctuations in our experimental setup deviates from Kolmogorov (K41) theory for fully developed turbulence regime.Comment: 25 pages, 9 figures and 4 tables. V3: Added comments, references, figures and major correction

    Complex systems methods characterizing nonlinear processes in the near-Earth electromagnetic environment: recent advances and open challenges

    Get PDF
    Learning from successful applications of methods originating in statistical mechanics, complex systems science, or information theory in one scientific field (e.g., atmospheric physics or climatology) can provide important insights or conceptual ideas for other areas (e.g., space sciences) or even stimulate new research questions and approaches. For instance, quantification and attribution of dynamical complexity in output time series of nonlinear dynamical systems is a key challenge across scientific disciplines. Especially in the field of space physics, an early and accurate detection of characteristic dissimilarity between normal and abnormal states (e.g., pre-storm activity vs. magnetic storms) has the potential to vastly improve space weather diagnosis and, consequently, the mitigation of space weather hazards. This review provides a systematic overview on existing nonlinear dynamical systems-based methodologies along with key results of their previous applications in a space physics context, which particularly illustrates how complementary modern complex systems approaches have recently shaped our understanding of nonlinear magnetospheric variability. The rising number of corresponding studies demonstrates that the multiplicity of nonlinear time series analysis methods developed during the last decades offers great potentials for uncovering relevant yet complex processes interlinking different geospace subsystems, variables and spatiotemporal scales

    Wind Power Persistence Characterized by Superstatistics

    Get PDF
    Mitigating climate change demands a transition towards renewable electricity generation, with wind power being a particularly promising technology. Long periods either of high or of low wind therefore essentially define the necessary amount of storage to balance the power system. While the general statistics of wind velocities have been studied extensively, persistence (waiting) time statistics of wind is far from well understood. Here, we investigate the statistics of both high- and low-wind persistence. We find heavy tails and explain them as a superposition of different wind conditions, requiring q-exponential distributions instead of exponential distributions. Persistent wind conditions are not necessarily caused by stationary atmospheric circulation patterns nor by recurring individual weather types but may emerge as a combination of multiple weather types and circulation patterns. This also leads to Fréchet instead of Gumbel extreme value statistics. Understanding wind persistence statistically and synoptically may help to ensure a reliable and economically feasible future energy system, which uses a high share of wind generation

    Causal Inference in the Outer Radiation Belt: Evidence for Local Acceleration

    No full text
    Abstract Currently, there is no clear understanding of the comprehensive set of variables that controls fluxes of relativistic electrons within the outer radiation belt. Herein, the methodology based on causal inference is applied for identification of factors that control fluxes of relativistic electrons in the outer belt. The patterns of interactions between the solar wind, geomagnetic activity and belt electrons have been investigated. We found a significant information transfer from solar wind, geomagnetic activity and fluxes of very low energy electrons (54 keV), into fluxes of relativistic (470 keV) and ultra‐relativistic (2.23 MeV) electrons. We present evidence of a direct causal relationship from relativistic into ultra‐relativistic electrons, which points to a local acceleration mechanism for electrons energization. It is demonstrated that the observed information transfer from low energy electrons at 54 keV into energetic electrons at 470 keV is due to the presence of common external drivers such as substorm activity
    corecore