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The Horizontal Visibility Graph (HVG) is a graph-theoretical representation of a time series and
builds a bridge between dynamical systems and graph theory. In recent years this representation has
been used to describe and theoretically compare different types of dynamics and has been applied to
characterize empirical signals, by extracting topological features from the associated HVGs which
have shown to be informative on the class of dynamics. Among some other measures, it has been
shown that the degree distribution of these graphs is a very informative feature that encapsulates
nontrivial information of the series’s generative dynamics. In particular, the HVG associated to a bi-
infinite real-valued series of independent and identically distributed random variables is a universal
exponential law P (k) = (1/3)(2/3)k−2, independent of the series marginal distribution. Most of the
current applications have however only addressed real-valued time series, as no exact results are
known for the topological properties of HVGs associated to integer-valued series. In this paper we
explore this latter situation and address univariate time series where each variable can only take a
finite number n of consecutive integer values. We are able to construct an explicit formula for the
parametric degree distribution Pn(k), which we prove to converge to the continuous case for large
n and deviates otherwise. A few applications are then considered.

I. INTRODUCTION

In recent years methods of network science have been applied to describe the structure of time series and signals,
proposing mappings and transformations from series to graphs with the aim of making some sort of graph-theoretical
time series analysis. Among other approaches [1–5], the family of visibility algorithms [6, 7] is a collection of recipes
which map an ordered sequence of N numbers to a graph of N vertices where an edge between each two vertices
exist if a certain geometric criterion is fulfilled in the sequence. Accordingly these methods have been shown to be
very fruitful to give a topological characterization of time series and dynamics. In particular, it has been shown that
(i) both the structure of complex, irregular time series and nontrivial ingredients of its underlying dynamics are
inherited in the topology of the visibility graphs, and therefore (ii) simple topological properties of the graphs can
be used as time series features for description and automatic classification purposes. Examples include a topological
characterization of chaotic series (and routes to chaos) [12–14] or stochastic series [8, 20, 22, 28], and the method
has been used for the description and classification of empirical time series appearing in physics [15–19, 23–25],
physiology [26, 27], neuroscience [29] or finance [21, 30] to cite only a few examples.
In most of the practical applications, the time series under study are real-valued. As a matter of fact, the set of
rigorous results that have appeared in recent years assume such thing. But how does the scenario changes when
the time series under study can only take a finite set of integer values, or in other words, when the dynamics run
over a finite field? From a combinatoric and number theoretic viewpoint (where integer sequences abound) this is
an interesting question on itself. It is also relevant from a dynamical viewpoint, as in areas such as Markov Chain
theory, symbolic dynamics or arithmetic dynamics integer-valued this is indeed the correct setting. Finally, while in
practical applications empirical time series are assumed to be real-valued there are nonetheless circumstances where
the empirical time series are inherently integer-valued.

In this work we partially fill this gap and propose as a first study to explore the properties of Horizontal Visbility
Graphs (HVG) associated to random and uncorrelated integer-valued series. We focus on the degree distribution
of these graphs as this is a metric which has been shown to be highly informative in the real-valued (continuous)
case [32]. In this continuous case it was proved [7] that uncorrelated random processes have a universal exponential
degree distribution, independent of the marginal distribution. Here we show that when the series takes values from
{1, 2, . . . , n}) the exponential law is only reached asymptotically (for n → ∞), and for finite n the distribution
deviates. The rest of the paper goes as follows: in section II we describe the method of HVG along with a few relevant
properties and we outline the benchmark result obtained for real-valued series . In section III we make a describe our
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FIG. 1: Sample time series of 20 (real-valued) data and its associated horizontal visibility graph (HVG).

findings for the integer-valued case, which culminate with a closed expression for the parametric degree distribution.
In section IV we conclude.

II. PRELIMINARIES

Let {x1, . . . , xN}, xi ∈ F (finite or infinite field) be a sequence of N data. Its horizontal visibility graph HVG is
defined as an undirected graph of N vertices, where each vertex is labelled in correspondence with the ordered datum
xi, so that x1 is related to vertex i = 1, x2 to vertex i = 2, and so on. Then, two vertices i, j (assume i < j without
loss of generality) share an edge if and only if xk < inf(xi, xj), ∀k : i < k < j. This is an ordering criterion which
can be visualized in figure 1.
HVG is a non crossing graph as described in algebraic combinatorics [9, 10] and can be proved to be invariant
under monotonic transformations in the series [11]. It is therefore an order statistics of the associated process, which
among other things means that the structure of this graph is not dependent upon the marginal distribution f(x). In
particular, the following result was found [7] for the degree distribution of the HVG associated to white noise:

Theorem 1. (Continuous case) Consider a (bi-infinite) time series {. . . , x−1, x0, x1, . . . } of identically and indepen-
dently distributed random variables extracted from a continuous marginal distribution f(x). Then ∀f(x) the associated
HVG has a universal degree distribution P (k) = (1/3)(2/3)k−2

Our aim in this paper is to study the analogous statement in the case where instead of having x ∈ R, the data
take values over a finite field F, which for simplicity we consider to be a subset of the integers. Let thus consider a
(bi-infinite) time series {. . . , x−1, x0, x1, . . . } of identically and independently distributed random variables sampled
from a uniform discrete distribution of n integers: ∀t, xt = ξ, ξ ∼ U{1, 2, . . . , n}, and let us call Pn(k) the degree
distribution of the associated HVG. In figure 2 we plot in semi-log scales the numerical estimate of Pn(k) for n =
2, 3, 4, 8, 16, 32, 64, 128, 256, 512 and 1024 (in every case we have generated a time series of 105 data). As n increases,
we can see how Pn(k) approaches the universal exponential shape found in the continuous case (red dashed line), this
convergence being from above for k = 2, 3 and from below for k ≥ 4. According to theorem 1, one should indeed
expect limn→∞ Pn(k) = P (k) as for large n the marginal distribution of the time series approaches a continuous form,
however numerical evidence suggests that for small values of n the deviations from this law are large. In the rest of
the paper we develop a combinatorial framework to explicitly compute Pn(k) for finite n.

III. INTEGER-VALUED SERIES: THEORETICAL DERIVATION OF Pn(k)

We start by noting that Pn(k) is equivalent to the probability that an arbitrary node of the graph (whose associated
datum is for convenience denoted x0) has degree k, that is x0 has horizontal visibility of exactly k other data. Among
these k neighbours, there always exist two bounding data (at right and left hand side respectively), as indeed the
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FIG. 2: Semilog plot of the numerical values of Pn(k) for n = 2, 3, 22, 23, 24, 25, 26, 27, 28, 29, 210 extracted from series of N = 105

i.i.d. uncorrelated random variables ξ ∈ U{1, . . . , n}

minimum degree is k = 2. The remaining k − 2 data are located among the bounding data. These inner data can
be ordered (sorted by size) in only k − 1 different ways, and it is easy to prove that one can label each of the k − 1
configurations as Ci, i = 0, 1, . . . , k − 2 where the index i determines the number of inner data placed at the left
hand side of x0 (that is, the number of inner data taking place ’before’ in the time series). In other words, Ci is the
configuration for which out of the free k− 2 visible inner data, i of them are placed before x0 and k− 2− i are placed
after x0. On top of this, note that an arbitrary number of hidden data can take place after each inner datum. These
hidden data don’t contribute to the degree but play an important role in the computation of the degree probabilities.
We therefore split Pn(k) accordingly

Pn(k) =

k−2∑
i=0

Pnk[Ci], (1)

So far, the construction follows the one elaborated in the continuous case. Note however that in the discrete case
n < ∞, by construction not all Ci are admissible given a concrete value of n. For instance, it is easy to see that for
n = 2, P2k(Ci>1) = 0. Actually, it is easy to prove that given n, the largest admissible degree kmax(n) = 2n, and thus
Pn(k > 2n) = 0. These restrictions were not present in the continuous case and it can be proved that in the general
case we have the following:

Lemma 1. Given n and k, after only counting admissible configurations eq. 1 is effectively reduced into

Pn(k) =

min(n−1,k−2)∑
i=max(k−n−1,0)

Pnk[Ci]

Proof. The proof is based on counting the minimal number of distinct symbols in the distribution for a given config-
uration to be feasible. To be able to allocate i inner data and a bounding data at the left hand side of x0, one needs
for those to be visible that n ≥ i+ 1, therefore i ≤ n− 1 (this proofs the upper limit). Respectively for the right hand
side one needs n ≥ k − 1− i, therefore i ≥ k − n− 1.

Notice that the discrete nature of each random variable x precludes using integrals to calculate probabilities, so
the approach followed to prove theorem 1 is not valid here anymore. We split again the computation by conditioning
each configuration to the value of x0. Applying Bayes theorem, we have
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FIG. 3: Sample diagrams for Pn(2), Pn(3) and Pn(4).

Pnk[Ci] =

n∑
m=1

Pnk[Ci|x0 = m]Sn(x0 = m) (2)

where Pnk[Ci|x0 = m] is the probability of Ci taking place, conditioned to x0 taking a particular value x0 = m
(where m ∈ [1, n]) and Sn(x0 = m) is the probability that x0 takes indeed the value m. As we assume uniformly
distributed random variables we have ∀mSn(x0 = m) = 1/n but this condition can be removed if needed. We
define Pnki(m) := Pnk[Ci|x0 = m]Sn(x0 = m). Now, again the fact that n is finite necessarily forbids some events,
effectively reducing the number of terms in equation 2. This is summarized in the following proposition.

Lemma 2. Given n and k, after only counting admissible events eq. 2 is effectively reduced into

Pnk[Ci] =

n∑
m=max(i+1,k−1−i)

Pnki(m)

Proof. To be able to allocate i inner data and a bounding data at the left hand side of x0 = m, one needs for those
to be visible that m ≥ i+ 1. Respectively for the right hand side one needs m ≥ k − 1− i.

Once we have formally splitted the computation of Pn(k) into configurations and conditioned to different values of
x0 we are ready to derive rigorously this parametrized distribution. Before attempting to find a general expression
for Pn(k) for illustrative purposes we need to study some particular cases first. All over these examples we make use
of lemmas 1 and 2.

A. Illustrative examples: P2(2), Pn(2), P3(3), Pn(3) and P4(4)

P2(2). For n = 2, the time series only takes values from {1, 2}, and S2(m) = 1/2. The probability for each degree
can be easily computed in explicit form. There is only one configuration with neither inner nor hidden data, just the
seed and two bounding data (see figure 3). We can condition x0 to be both 1 and 2, so trivially

P2(2) = P220(1) + P220(2) =
1

2
· 1 +

1

2
· 1

2
· 1

2
= 5/8,

where each contribution follows the structure of the diagram P220(·) ≡ [B][S][B], where [B] and [S] denote the
probability of the bounding and seed data respectively. Note that when m = 1 the bounding data will indeed ’bound’
x0 regardless of their value.
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FIG. 4: log-linear plot of the numerical values of Pn(k) for k < 6 and n = 2, 3, 22, 23, 24, 25, 26, 27, 28, 29, 210 extracted from
series of N = 105 i.i.d. uncorrelated random variables ξ ∈ U{1, . . . , n}. The dashed lines correspond to the values for the
continuous case and solid points are the predictions of the theory. The solid lines for the cases k = 4, 5 are fittings to rational
approximations Pn(k) ≈ α+ β/n+ γ/n2

Pn(2). The result for P2(2) can be readily generalized for an arbitrary n. In this case, S(m) = 1/n and we can easily

see that the probability of a bounding data is not simply 1/n but will depend on the conditioning of x0, in such a
way that for x0 = m one has

[B]→ [B(m)] =
n+ 1−m

n

It is therefore easy to prove by induction that

Pn(2) =

n∑
m=1

[B(m)][Sn(m)][B] =
1

n3

n∑
m=1

(n+ 1−m)2 =
2n2 + 3n+ 1

6n2
(3)

Note that limn→∞ Pn(2) = 1/3 and thus the discrete case converges to the continuous case asymptotically (see figure
4 for a comparison with numerical values).

P3(3). According to the previous formula we find P3(2) = 14/27. Now P3(3) is the result of two configurations C0

and C1 which are actually symmetric, therefore P3(3) = P33(C0) + P33(C1) = 2P33(C0) so we focus on C0 without
loss of generality. As k = 3, in C0 we have an inner datum (and associated hidden structure) at the right hand side
of x0 (see figure 3) and by virtue of lemma 2 m ≥ 2, thus

P33(C0) = P330(2) + P330(3)

By construction,

P330(2) = [B(2)][S(2)][IH(2)][B(2)] =
2

3
· 1

3
·
[

1

3
·
∞∑
k=0

(
1

3

)k]
· 2

3
=

4

54

where: (i) the bounding datum can be either 2 or 3, thus has probability 2/3, (ii) we have put together the inner
datum (which could only be equal to 1) and its hidden structure (an arbitrary number of data hidden by the inner
datum). As this inner datum needs to be equal to 1, then the hidden data can only take the value 1, thus contributes
with a geometric series with common ratio 1/3. Conversely, for m = 3 the bounding data can only take one value,
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the inner datum is free to take the values 1 or 2, and for this latter case its hidden structure can be formed by 1s and
2s. Accordingly we find

P330(3) = [B(3)][S(3)][IH(3)][B(3)] =
1

3
· 1

3
·
[

1

3
·
∞∑
k=0

(
1

3

)k

+
1

3
·
∞∑
k=0

(
2

3

)k]
· 1

3
=

3

54

Altogether, P3(3) = 14/54.

Pn(3) We can again generalize the latter result for an arbitrary n, as Pn(3) = 2Pn3(C0), where for an arbitrary n

according to lemma 2 we have Pn3(C0) =
∑n

m=2 Pnki(m) and Pnki(m) = [B(m)][Sn(m)][IH(n,m)][B(m)], where it
is easy to prove by induction that

[IH(n,m)] = Sn(m)

m−1∑
p=1

[ ∞∑
k=0

(
p

n

)k]
=

m−1∑
p=1

1

n− p

Now this last expression can be summed up in terms of harmonic numbers. Altogether,

Pn(3) =
2

n

n∑
m=2

(
n+ 1−m

n

)2 m−1∑
p=1

1

n− p
≈ 4n2 + 3n− 1

18n2
, (4)

where the last approximation is valid for n > 4 (for n = 2, 3, 4 Pn(3) take the values 1/4, 14/54 and 49/192 respec-
tively). Comparison with numerics is reported in figure 4. Note that again we have limn→∞ Pn(3) = 2/9 = P (3),
and therefore the discrete case again converges to the continuous case for large n.

From the last particular case P3(3) we have also learned that the the probability contribution of an inner-hidden data
structure indeed also depends on the conditioning of x0, as a summation dependent on m emerges due to the fact that
both the inner and the hidden data are allowed to take different values depending on the conditioning on x0. As this
is in relation to both n and the number of inner variables, then it is sensible to write formally [IH] ≡ [IH(m,n, i)],
i.e. the probability of this structure is a function of the conditioning of x0, n and the configuration Ci. The concrete
dependence will be evident only after the next particular case, but for now we can give a formal expression for a
general Pnki(m) as

Pnki(m) = [B(m)][IH(m,n, i)][Sn(m)][IH(m,n, k − 2− i)][B(m)] (5)

Pn(4). This is the next nontrivial case. By symmetry we have Pn(4) = 2Pn4(C0) + Pn4(C1), but now C0 and C1 are
qualitatively different configurations. Whereas for C1 there is exactly one inner datum at each side of the seed, in C0

we will find two concatenated inner data at the right hand side of the seed. In what follows we will see that is has
a dramatic effect, as IH(m,n, 2) 6= IH(m,n, 1)2. Let us consider the easier case C1 first. Formally, each side of the
seed is independent and therefore

Pn4[C1] =

n∑
m=2

[Sn(m)]

(
[IH(m,n, 1)][B(m)]

)2

where

[IH(m,n, 1)] ≡ [IH(m,n)] = Sn(m)

m−1∑
p=1

[ ∞∑
k=0

(
p

n

)k]
=

m−1∑
p=1

1

n− p

Therefore

Pn4[C1] =

n∑
m=2

(n+ 1−m)2

n3

[m−1∑
p=1

1

n− p

]2

On the other hand, for C0 we have

Pn4[C0] =

n∑
m=3

[Sn(m)][IH(m,n, 0)][IH(m,n, 2)][B(m)]2,
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where [IH(m,n, 0)] = 1 and m starts at m = 3 according to lemma 2. The key ingredient of this configuration is of
course [IH(m,n, 2)]. To understand its structure, let us consider n = 4 for simplicity. Then after a bit of algebra

IH(3, 4, 2) =

[
1

4

∞∑
k=0

(
1

4

)k]
·
[

1

4

∞∑
k=0

(
2

4

)k]
,

IH(4, 4, 2) =

[
1

4

∞∑
k=0

(
1

4

)k

· 1

4

∞∑
k=0

(
2

4

)k

+
1

4

∞∑
k=0

(
1

4

)k

· 1

4

∞∑
k=0

(
3

4

)k

+
1

4

∞∑
k=0

(
2

4

)k

· 1

4

∞∑
k=0

(
3

4

)k]
.

The general structure of IH(m,n, i) can be proved by induction. Intuitively, it is a sum of terms where each term
combines the product of i contributions where in each case the hidden variables can take a different number of possible
values. Essentially, we are enumerating the different possible arrangements of i inner data (and an arbitrary number
of hidden data among each inner datum), where the inner data take values from {1, . . . ,m− 1} (m− 1 is the upper
bound as one needs to leave room for the bounding datum). With the extra condition that the seed takes the value
m and that all inner data are visible by construction, for i inner data there are

(
m−1

i

)
different ways of giving values

to the inner data.

B. An exact formula for Pn(k)

Let

f(z) =
1

n

∞∑
k=0

(
z

n

)k

=
1

n− z
(6)

Then one can show that

[IH(m,n, i > 0)] =

m−1∑
j1=1

m−2∑
j2=j1+1

· · ·
m−i∑

ji=ji−1+1

f(j1) · f(j2) · · · f(ji) =

i∏
l=1

m−i+l−1∑
jl=jl−1+1

f(jl), (7)

where we need to define j0 := 0 and [IH(m,n, i = 0)] := 1. The general solution to the parametric degree distribution
Pn(k) is then provided by lemmas 1 and 2 together with eqs. 5,6 and 7. We are thus ready to put this altogether:

Pn(k) =

min(n−1,k−2)∑
i=max(k−n−1,0)

n∑
m=max(i+1,k−1−i)

n+ 1−m
n3

[ i∏
l=1

m−i+l−1∑
jl=jl−1+1

f(jl)

][ k−2−i∏
l=1

m−i+l−1∑
jl=jl−1+1

f(jl)

]
, (8)

where j0 := 0. This formula gives a recipe to compute Pn(k) for arbitrary values of n and k. Unfortunately we have
not been able to find an algebraic enumeration and an associated generic algebraic closed form for eq. 8. On the
other hand, for a fixed k we have seen that one finds suitable rational functions such as eqs. 3 or 4. We conjecture

f(n) := Pn(k)|k fixed =
An2 +Bn+ C

Dn2
≡ α+

β

n
+

γ

n2
,

where A,B,C,D ∈ N+, α = A/D = (1/3)(2/3)k−2, β = B/D, γ = C/D. In figure 4 we plot this approximation
(which is exact for k = 2, 3) for k < 6, showing a perfect agreement with the numerics. We also find in that figure
that for each k, the convergence to the continuous case P (k) is faster as k increases.

C. Asymptotic approximation

An elementary asymptotic approximation for Pn(k) can be found using a simple combinatorial argument. For a
fixed n, Pn(2) can be understood as the probability that an arbitrary datum is bounded, so 1−Pn(2) is the probability
that a given datum is not bounded by its first neighbours. In the same line, for a fixed n, Pn(k) is the probability
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FIG. 5: log-linear plot of the numerical values of P64(k) extracted from series of N = 105 i.i.d. uncorrelated random variables
ξ ∈ U{1, . . . , n}. The solid line corresponds to the asymptotic approximation (eq. 9 for n = 64), which works well for the
exponentially decaying part of the distribuion.

that an arbitrary datum has at least visibility with k − 2 inner data -whose probability can be approximated to
(1− Pn(2))k−2- which is then bounded. This sort of ’Markovian’ approximation gives

P app
n (k) = Pn(2)(1− Pn(2))k−2 =

(2n2 + 3n+ 1)[1− (2n2 + 3n+ 1)/6n2]k−2

6n2
(9)

where the last step involves taking the limit of large n. This is an algebraic closed form equation, however this formula
is not exact as it is not taking into account that inner data are correlated (i.e. the values that each inner data can
take depend on the position of the inner data). Still, this approximation improves when n increases, and as the
argument holds exactly in the limit n→∞ we have limn→∞ P app

n (k) = limn→∞ Pn(k), hence P app
n (k) and Pn(k) are

asymptotic. On the other hand, taking the limit in eq.9 we also have

lim
n→∞

P app
n (k) =

1

3

(
2

3

)k−2

,

concluding that Pn(k) indeed converges to P (k). It is easy to see that P app
n (k) is essentially an exponential approxi-

mation and, according to figure 2, gives good estimates of Pn(k) for those values that comply to an exponential shape.
In other words, the super-exponential cutoff that develops for large k for each n is badly approximated by P app

n (k),
however for the range of values of k for which each distribution approaches an exponential decay, P app

n (k) should give
a good match. A confirmation of this is shown for a particular example where n = 26 in figure 5.

IV. CONCLUDING REMARKS AND DISCUSSION

In recent years several rigorous results have been advanced within the theory of horizontal visibility graphs. Yet in
all the cases the series under study was assumed to be real-valued. In this work we depart from this assumption and
study the properties of the degree distribution Pn(k) associated to a random uncorrelated series {x1, x2, . . . } that
only takes a finite number of values F ⊂ Z. Note at this point that F does not need to be in the form (1, 2, . . . , n):
as the HVG is invariant under monotonic transformations in the series, it is only required that F = (b1, b2, . . . , bn),
where bi = bi−1 + c and c ∈ N+.
We have observed that for any finite n, Pn(k) deviates from the universal shape P (k) obtained in the continuous case,
and confirmed analytically that limn→∞ Pn(k) = P (k). As we have seen, moving from infinite to finite fields makes
the problem considerably more difficult and involved to address analytically, however we have been able to show in
an explicit way how to analytically compute Pn(k) for an arbitrary n and k, although unfortunately we haven’t found
a closed algebraic form.
While the theory has been derived assuming (bi)infinite size series, we also found good convergence properties for finite
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sequence with n symbols via homogeneous partition of the phase space. Circles correspond to the case n = 2 while squares
correspond to n = 3. We observe that P2(k) fails to discriminate both processes, P3(k) is already clearly different.

sizes. As an illustration, we consider the ability of this method to distinguish between a purely random, uncorrelated
process (iid) and a deterministic, chaotic process generated by a fully chaotic logistic map xt+1 = 4xt(1−xt), x ∈ [0, 1].
The power spectrum of both processes is flat (and therefore both processes have delta-distributed autocorrelation
functions), so this discrimination is nontrivial a priori. As a matter of fact, it is well known that HVG easily
distinguishes both processes as their associated degree distribution is clearly different [7, 8]. In other words, in the
limit n → ∞, Pn(k) easily discriminates these processes. What happens if we compare symbolic representations of
both processes (namely, finite n)? To explore this, we proceed to construct an homogeneous partition of the interval
[0, 1] into n non-overlapping cells of equal size, and accordingly we construct the integer series associated to a chaotic
trajectory {xt}, and we compare this series with a sequence of ’unbiased coin tosses’ where the coin has n faces
(ξ ∈ {1, 2, . . . , n}. In figure 6 we compare the theoretical shape of Pn(k) associated to the unbiased iid process with
the numerics obtained in the chaotic case, finding that while P2(k) seems to be identical in both processes, already
P3(k) shows substantially deviations.

Incidentally, in practice one can always construct statistical tests to investigate the compliance to Pn(k) for exper-
imental sequences of finite size N (such as the case for n = 2 above). For instance, a Pearson χ2 statistic can be
used

χ2 = N

kmax(n)=2n∑
k=2

[fn(k)− Pn(k)]2

Pn(k)
, (10)

where fn(k) is the observed (estimated) frequency and Pn(k) is the theoretical frequency. χ2 is the Pearson’s cumu-
lative test statistic, which asymptotically approaches a χ2 distribution with 2n − 1 degrees of freedom. One could
build an hypothesis test where the null hypothesis is that the time series is uncorrelated, and apply this in a variety
of empirical series and situations, such as to explore the normality conjecture of numbers such as π,

√
2 etc. In the

example considered above it is not really necessary to use an hypothesis test for n = 3 as there is a clear deviation.
For n = 2 we can apply it: the theoretical values are P2(2) = 5/8, P2(3) = 1/4, P2(4) = 1/8 and for k > 4 P2(k) = 0,
so for a trajectory of N = 106 the statistic gives χ2 ≈ 0.413 thus we cannot reject the null hypothesis (i.e. the method
cannot discriminate for n = 2) as this value is much smaller than the critical ones.
The application of HVG to inherently discrete (symbolic) sequences in areas such as text analysis in linguistics or
DNA sequencing in bioinformatices to cite just a couple are potential avenues for future research.
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