137 research outputs found

    Spatial modes for transmission of chikungunya virus during a large chikungunya outbreak in Italy: a modeling analysis

    Get PDF
    14openInternationalBothBackground The spatial spread of many mosquito-borne diseases occurs by focal spread at the scale of a few hundred meters and over longer distances due to human mobility. The relative contributions of different spatial scales for transmission of chikungunya virus require definition to improve outbreak vector control recommendations. Methods We analyzed data from a large chikungunya outbreak mediated by the mosquito Aedes albopictus in the Lazio region, Italy, consisting of 414 reported human cases between June and November 2017. Using dates of symptom onset, geographic coordinates of residence, and information from epidemiological questionnaires, we reconstructed transmission chains related to that outbreak. Results Focal spread (within 1 km) accounted for 54.9% of all cases, 15.8% were transmitted at a local scale (1–15 km) and the remaining 29.3% were exported from the main areas of chikungunya circulation in Lazio to longer distances such as Rome and other geographical areas. Seventy percent of focal infections (corresponding to 38% of the total 414 cases) were transmitted within a distance of 200 m (the buffer distance adopted by the national guidelines for insecticide spraying). Two main epidemic clusters were identified, with a radius expanding at a rate of 300–600 m per month. The majority of exported cases resulted in either sporadic or no further transmission in the region. Conclusions Evidence suggest that human mobility contributes to seeding a relevant number of secondary cases and new foci of transmission over several kilometers. Reactive vector control based on current guidelines might allow a significant number of secondary clusters in untreated areas, especially if the outbreak is not detected early. Existing policies and guidelines for control during outbreaks should recommend the prioritization of preventive measures in neighboring territories with known mobility flows to the main areas of transmission.openGuzzetta, Giorgio; Vairo, Francesco; Mammone, Alessia; Lanini, Simone; Poletti, Piero; Manica, Mattia; Rosa, Roberto; Caputo, Beniamino; Solimini, Angelo; Torre, Alessandra Della; Scognamiglio, Paola; Zumla, Alimuddin; Ippolito, Giuseppe; Merler, StefanoGuzzetta, G.; Vairo, F.; Mammone, A.; Lanini, S.; Poletti, P.; Manica, M.; Rosa, R.; Caputo, B.; Solimini, A.; Torre, A.D.; Scognamiglio, P.; Zumla, A.; Ippolito, G.; Merler, S

    Spatial modes for transmission of chikungunya virus during a large chikungunya outbreak in Italy. A modeling analysis

    Get PDF
    Background The spatial spread of many mosquito-borne diseases occurs by focal spread at the scale of a few hundred meters and over longer distances due to human mobility. The relative contributions of different spatial scales for transmission of chikungunya virus require definition to improve outbreak vector control recommendations. Methods We analyzed data from a large chikungunya outbreak mediated by the mosquito Aedes albopictus in the Lazio region, Italy, consisting of 414 reported human cases between June and November 2017. Using dates of symptom onset, geographic coordinates of residence, and information from epidemiological questionnaires, we reconstructed transmission chains related to that outbreak. Results Focal spread (within 1 km) accounted for 54.9% of all cases, 15.8% were transmitted at a local scale (1–15 km) and the remaining 29.3% were exported from the main areas of chikungunya circulation in Lazio to longer distances such as Rome and other geographical areas. Seventy percent of focal infections (corresponding to 38% of the total 414 cases) were transmitted within a distance of 200 m (the buffer distance adopted by the national guidelines for insecticide spraying). Two main epidemic clusters were identified, with a radius expanding at a rate of 300–600 m per month. The majority of exported cases resulted in either sporadic or no further transmission in the region. Conclusions Evidence suggest that human mobility contributes to seeding a relevant number of secondary cases and new foci of transmission over several kilometers. Reactive vector control based on current guidelines might allow a significant number of secondary clusters in untreated areas, especially if the outbreak is not detected early. Existing policies and guidelines for control during outbreaks should recommend the prioritization of preventive measures in neighboring territories with known mobility flows to the main areas of transmission

    Open Problems on Central Simple Algebras

    Full text link
    We provide a survey of past research and a list of open problems regarding central simple algebras and the Brauer group over a field, intended both for experts and for beginners.Comment: v2 has some small revisions to the text. Some items are re-numbered, compared to v

    Co-circulation of SARS-CoV-2 Alpha and Gamma variants in Italy, February and March 2021

    Get PDF
    Background. Several SARS-CoV-2 variants of concern (VOC) have emerged through 2020 and 2021. There is need for tools to estimate the relative transmissibility of emerging variants of SARS-CoV-2 with respect to circulating strains.AimWe aimed to assess the prevalence of co-circulating VOC in Italy and estimate their relative transmissibility.Methods. We conducted two genomic surveillance surveys on 18 February and 18 March 2021 across the whole Italian territory covering 3,243 clinical samples and developed a mathematical model that describes the dynamics of co-circulating strains.Results. The Alpha variant was already dominant on 18 February in a majority of regions/autonomous provinces (national prevalence: 54%) and almost completely replaced historical lineages by 18 March (dominant across Italy, national prevalence: 86%). We found a substantial proportion of the Gamma variant on 18 February, almost exclusively in central Italy (prevalence: 19%), which remained similar on 18 March. Nationally, the mean relative transmissibility of Alpha ranged at 1.55-1.57 times the level of historical lineages (95% CrI: 1.45-1.66). The relative transmissibility of Gamma varied according to the assumed degree of cross-protection from infection with other lineages and ranged from 1.12 (95% CrI: 1.03-1.23) with complete immune evasion to 1.39 (95% CrI: 1.26-1.56) for complete cross-protection.Conclusion. We assessed the relative advantage of competing viral strains, using a mathematical model assuming different degrees of cross-protection. We found substantial co-circulation of Alpha and Gamma in Italy. Gamma was not able to outcompete Alpha, probably because of its lower transmissibility

    A tomographic analysis of reflectometry data I: Component factorization

    Full text link
    Many signals in Nature, technology and experiment have a multi-component structure. By spectral decomposition and projection on the eigenvectors of a family of unitary operators, a robust method is developed to decompose a signals in its components. Different signal traits may be emphasized by different choices of the unitary family. The method is illustrated in simulated data and on data obtained from plasma reflectometry experiments in the tore Supra.Comment: 27 pages Latex, 17 figure

    Transnational partisanship: idea and practice

    Get PDF
    That parties might successfully organize transnationally is an idea often met with scepticism. This article argues that while certain favourable conditions are indeed absent in the transnational domain, this implies not that partisanship is impossible but that it is likely to be marked by certain traits. Specifically, it will tend to be episodic, structured as a low-density network and delocalized in its ideational content. These tendencies affect the normative expectations one can attach to it. Transnational partisanship should be valued as a transitional phenomenon, e.g. as a pathway to transnational democracy, more than as a desirable thing in itself

    Through-Thickness Residual Stress Profiles in Austenitic Stainless Steel Welds: A Combined Experimental and Prediction Study

    Get PDF
    Economic and safe management of nuclear plant components relies on accurate prediction of welding-induced residual stresses. In this study, the distribution of residual stress through the thickness of austenitic stainless steel welds has been measured using neutron diffraction and the contour method. The measured data are used to validate residual stress profiles predicted by an artificial neural network approach (ANN) as a function of welding heat input and geometry. Maximum tensile stresses with magnitude close to the yield strength of the material were observed near the weld cap in both axial and hoop direction of the welds. Significant scatter of more than 200 MPa was found within the residual stress measurements at the weld center line and are associated with the geometry and welding conditions of individual weld passes. The ANN prediction is developed in an attempt to effectively quantify this phenomenon of ‘innate scatter’ and to learn the non-linear patterns in the weld residual stress profiles. Furthermore, the efficacy of the ANN method for defining through-thickness residual stress profiles in welds for application in structural integrity assessments is evaluated

    Quantitative Evaluation of Artifact Removal in Real Magnetoencephalogram Signals with Blind Source Separation

    Get PDF
    The magnetoencephalogram (MEG) is contaminated with undesired signals, which are called artifacts. Some of the most important ones are the cardiac and the ocular artifacts (CA and OA, respectively), and the power line noise (PLN). Blind source separation (BSS) has been used to reduce the influence of the artifacts in the data. There is a plethora of BSS-based artifact removal approaches, but few comparative analyses. In this study, MEG background activity from 26 subjects was processed with five widespread BSS (AMUSE, SOBI, JADE, extended Infomax, and FastICA) and one constrained BSS (cBSS) techniques. Then, the ability of several combinations of BSS algorithm, epoch length, and artifact detection metric to automatically reduce the CA, OA, and PLN were quantified with objective criteria. The results pinpointed to cBSS as a very suitable approach to remove the CA. Additionally, a combination of AMUSE or SOBI and artifact detection metrics based on entropy or power criteria decreased the OA. Finally, the PLN was reduced by means of a spectral metric. These findings confirm the utility of BSS to help in the artifact removal for MEG background activity
    • …
    corecore