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Abstract

The Magnetoencephalogram (MEG) is contaminated with undesired signals,

which are called artifacts. Some of the most important ones are the cardiac and

the ocular artifacts (CA and OA, respectively), and the power line noise (PLN).

Blind Source Separation (BSS) has been used to reduce the influence of the artifacts

in the data. There is a plethora of BSS-based artifact removal approaches, but few

comparative analyses. In this study, MEG background activity from 26 subjects

was processed with five widespread BSS (AMUSE, SOBI, JADE, extended Info-

max, and FastICA) and one Constrained BSS (cBSS) techniques. Then, the ability

of several combinations of BSS algorithm, epoch length, and artifact detection met-

ric to automatically reduce the CA, OA, and PLN were quantified with objective

criteria. The results pinpointed to cBSS as a very suitable approach to remove the
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CA. Additionally, a combination of AMUSE or SOBI and artifact detection metrics

based on entropy or power criteria decreased the OA. Finally, the PLN was reduced

by means of a spectral metric. These findings confirm the utility of BSS to help in

the artifact removal for MEG background activity.

Key terms

Blind Source Separation (BSS); Cardiac Artifact (CA); Evaluation; Independent

Component Analysis (ICA); Magnetoencephalogram (MEG); Ocular Artifact (OA);

Power Line Noise (PLN)

1 Introduction

The Magnetoencephalogram (MEG) is the non-invasive recording of the magnetic fields

generated by the neurons. Likewise the Electroencephalogram (EEG), it is a neurophysi-

ological technique able to directly measure brain activity. Although both EEG and MEG

provide high temporal resolution, the latter offers some advantages over the former. The

magnetic recordings do not depend on any reference point and they are less affected by

extra-cerebral tissues than the EEG18. However, bodily organs contaminate the record-

ings with undesired activity (known as artifacts) that can bias the analyses18.

Normal brain activity usually generates magnetic fields whose amplitude ranges in the

order of hundreds of fT. On the other hand, the heart produces much stronger magnetic

fields, which have a considerable effect on the recordings of spontaneous brain activity.

This is known as Cardiac Artifact (CA)23. Significant contamination is also caused by

eye blinks and movements1. Each eye can be modeled as a small electrical dipole6. Eye

movements and blinks modify the orientation and intensity of such a dipole, thus altering

the associated electromagnetic fields near the eyes and causing the ocular artifact (OA)6.

Apart from these biological activities, the Power Line Noise (PLN) is also a noticeable

source of contamination in brain recordings12;25. The removal of the PLN with notch

filters is not a satisfactory solution if its frequency overlaps with that of the signals18.

Several methods have been tested to remove the artifacts from EEG and MEG data.

These include: epoch rejection14, regression techniques6, and Blind Source Separation
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(BSS)22;39. The simplest method to eliminate the artifacts is epoch rejection, which

discards raw data epochs with high artifactual contamination. This is performed indi-

vidually for each epoch, which is time-consuming14. If the contamination is widespread,

epoch rejection produces significant data loss. This method is intrinsically subjective14;25.

Another method to attenuate some artifacts in the MEG and, especially, in the EEG is

removing the projection of an auxiliary signal from the brain recordings14;25. This tech-

nique has been widely applied to remove the OA from the EEG6. It consists of computing

the projection of the reference signal on the recordings and then subtracting it from the

data6. Nevertheless, this technique introduces new unexpected artifacts in the record-

ings if the reference signal (most often the Electrooculagram, EOG) contains some brain

activity14;25. Furthermore, it requires to record the auxiliary signal and the brain data

simultaneously14;25.

BSS22;39 has also been used in the artifact removal problem12;25;34;36. BSS estimates

the set of components, or sources, which can be linearly combined to obtain the measured

signals. BSS does not need previous information about the recordings and its assumptions

are suitable for MEG and EEG data22;39. Nonetheless, the use of a reference, if available,

helps to guide the extraction of the artifacts with a Constrained Blind Source Separation

(cBSS)21.

A major problem in this BSS-based artifact removal is the detection of the artifac-

tual components. BSS isolates the artifacts into just a few sources22, but the visual

inspection of the contaminating activity is time-consuming. Thus, several studies have

introduced criteria to detect the artifacts. For instance, the use of statistical metrics (e.g.,

kurtosis and entropy) has been proposed to identify undesired components in EEG and

MEG2;7;9;12;27;31. In addition to being used in cBSS21, reference signals help to identify the

artifactual sources by means of measures like correlation2;7;24. The scalp topography can

also be used to remove OAs since most ocular activity is located near the eyes12;28;32;34.

In some cases, such as OAs and PLN, spectral features of the components are helpful in

the identification of the artifacts24;27;33. Some of those criteria have been combined to

detect various types of artifacts2;12;24;27;34;35.
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Despite the number of metrics proposed to detect artifactual activity in brain sig-

nals2;7;9;12;24;27;28;31;32;34–36, few comparative studies are available. Moreover, the evalu-

ation of the artifact rejection has quite often been made on subjective bases or with

synthetic signals. Very few studies have quantified the level of artifacts in real recordings

before and after the artifact removal7;12. Finally, most of those efforts have been devoted

to the OA in the EEG24;34–36, with the MEG receiving less attention7;12;31.

Thus, we have applied diverse straightforward BSS approaches to remove the CA,

OA, and PLN. Then, we have objectively compared their performance for real MEG

recordings. Those simple detection criteria had previously been proposed in the Liter-

ature2;7;12;17;30;31;35 and they are here tested on a different dataset. In contrast to other

studies, this study applies and tests the BSS-based artifact removal on real brain signals

without the need for simultaneous acquisitions of auxiliary signals.

2 Subjects and MEG Recording

Twenty-six healthy elderly subjects took part in the study (9 men and 17 women). The

average age was 71.77 ± 6.38 years (mean ± standard deviation, SD). The subjects are

part of a larger database collected to analyze the impact of Alzheimer’s Disease on the

MEG11;13 and they have been described elsewhere10. All participants gave their informed

consent for the research study, which was approved by the local ethics committee.

The MEG signals were recorded in a magnetically shielded room with a 148-channel

whole-head magnetometer (MAGNES 2500 WH, 4D Neuroimaging) in the MEG Center

Dr. Pérez-Modrego (Complutense University of Madrid, Spain). The recordings were

acquired while the subjects were lying on a patient bed with eyes closed in a relaxed

state. To mimic the conditions of clinical studies, they were asked to stay awake and not

to move eyes and head. For each subject, five minutes of MEG recording were acquired at

a sampling rate of 169.54 Hz. Afterwards, a bandpass FIR filter with cut-off frequencies

at 0.5 Hz and 60 Hz was applied to the MEGs, which were finally split into epochs of

10 s, 20 s, 40 s, 60 s and 90 s (1695, 3390, 6780, 10170 and 15255 samples, respectively).
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3 Methods

3.1 Blind Source Separation (BSS) for Artifact Removal

BSS denotes a set of data-driven approaches to extract the underlying sources, or com-

ponents, from a number of measurements. The term Independent Component Anal-

ysis (ICA) is often used to refer to some of the BSS techniques22;39. BSS represents

a set of m measured time-varying signals, x (t) = [x1 (t) , . . . , xm (t)]T, where T de-

notes transposition, as an unknown linear mixture of l latent underlying components,

s (t) = [s1 (t) , . . . , sl (t)]T, given by a full-rank m × l mixing matrix, A22;39. A vector

n (t) = [n1 (t) , . . . , nm (t)]T can also be included in the model to account for additive

noise10;12;22;36. The purpose of this additive noise term is twofold. It accounts for sensor

noise corrupting the measurements22 and for the modeling error of the BSS estimation36.

Thus, the BSS model becomes:

x (t) = As (t) + n (t) . (1)

Since only the observations, x (t), are available, several assumptions are needed to

estimate A and s (t) and to deal with n (t). In addition to linearity, it is hypothesized

that m ≥ l and that the mixture is stationary. Moreover, the components are assumed

to be mutually independent or, alternatively, decorrelated at any time delay22;39. All

these hypotheses have been validated for brain signals22;39. Using these assumptions, the

estimated components, ŝ (t), are computed as:

ŝ (t) = Bx (t) = B [As (t) + n (t)] = s (t) + Bn (t) , (2)

where B is the BSS demixing matrix, which must fulfill B = Â+. Here, + andˆ denote

pseudo-inverse matrix and estimated variable, respectively22;39.

The components are inspected to find out which ones are responsible for the arti-

facts2;12;36. Once the artifactual components have been identified, the clean signals are
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reconstructed by subtracting the artifactual components from the recordings:

xclean (t) = x (t)−
∑
j∈J

âj ŝj (t) , (3)

where J denotes the indices of all artifactual components and âj is the corresponding

column of Â. This approach is adopted to minimize the distortion of the true brain

activity36. Moreover, Eq. (3) can also be used with a cBSS algorithm, which extracts

only the BSS component of interest19.

3.2 Preprocessing and Model Order Selection

The implementation of most BSS algorithms assumes a noiseless mixture where m = l22.

However, EEG and MEG are affected by additive noise that corrupts the measurements

of the weak electromagnetic fields. Furthermore, the number of channels in current EEG

and MEG systems can be much larger than that of meaningful BSS components (i.e.,

m > l). Hence, a suitable preprocessing is needed to reduce the importance of the mea-

surement noise and the dimensionality of the input signals in the BSS algorithm10;12;22.

We apply a preprocessing based on Factor Analysis (FA). This approach is robust to

the presence of additive noise of different power at each sensor. The model order (l) is

estimated with a statistical criterion: the Minimum Description Length (MDL)12. The

preprocessing matrix for whitening and dimension reduction and the additive noise power

are estimated iteratively for several possible values of l. This consists of iteratively com-

puting the preprocessing matrix from the eigenvalue decomposition of the recordings’

covariance matrix minus the current estimation of the additive noise power and then

re-estimating the noise power from the lack of fit of the diagonal elements of the co-

variance matrix12. Once the preprocessing matrix and the noise power estimations have

converged, the MDL value is computed for the corresponding l12. The optimum number

of components is selected as the one providing the minimum MDL and the preprocessing

matrix calculated for that value of l is used to process the recordings. Further details

about this preprocessing can be found elsewhere10;12.
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3.3 BSS Algorithms

In addition to one cBSS technique19;21, we compared five BSS algorithms commonly used

in the analysis of EEGs and MEGs – AMUSE, SOBI, JADE, extended Infomax (eInfo-

max), and FastICA – as shown by several publications on the use of BSS for EEG and

MEG9–11;13;15;22;40. All these BSS algorithms are contained in the EEGLAB8, FastICA16

or ICALAB5 toolboxes for Matlab.

AMUSE37 and SOBI3 are time-structure-based methods, also known as second order

statistics (SOS) BSS. They assume that the sources have no spatial-temporal correla-

tions22. Thus, these techniques diagonalize a set of cross-covariance matrices of x (t).

AMUSE only considers two time delays (τ = 0 and τ = 1 samples)37, whereas SOBI

uses iterative procedures to simultaneously diagonalize multiple temporal lags3. SOBI is

applied with 50 consecutive time lags, from τ = 1 sample (τ ≈ 0.006 s) to τ = 50 samples

(τ ≈ 0.295 s) because this set of delays covers a wide time interval without extending

beyond the support of the average autocorrelation function of the MEG recordings10.

On the other hand, JADE4, eInfomax26, and FastICA20 rely on Higher-Order Statis-

tics (HOS) such as negentropy and kurtosis. They look for non-Gaussian sources assuming

that x (t) are observations of random variables where temporal order is irrelevant20;22.

FastICA is applied with the non-linearity tanh (·) and the deflationary approach20. This

function is selected for being a good general-purpose function20. eInfomax is used to es-

timate both sub- and super-Gaussian sources26. The number of each type of components

is automatically determined26. JADE has no input parameters4;20;40.

The previous algorithms decompose the signals into a set of sources. An alternative

is to guide the BSS so that only the components close to a signal of interest – reference:

r (t) – are extracted. This is called cBSS and requires a fair estimate of the activity

of interest22. In this case, the cBSS removes the need for identification and labeling of

the components21. The cBSS algorithms convert the constrained problem to an uncon-

strained one by introducing a regularization parameter in the decomposition19;29. Thus,

one obtains a component that is statistically independent of other sources and closest to

r (t)22. r (t) does not need to be perfectly identical to the source of interest, but it should
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be similar enough to drive the algorithm into the direction of the desired component22.

In this study, the cBSS implementation by Huang and Mi is used19.

3.4 Artifact Detection Metrics

Some widespread metrics to recognize the CA, OA, and PLN are compiled in this study.

We do not pretend to provide a full picture of all proposed metrics, but to offer a broad

vision of the types of approaches commonly employed in the Literature.

When a probability distribution is computed, the number of bins of the histogram is

set to the number of data samples divided by five9. Additionally, a ‘segment’ approach

is taken to compute the artifact detection metrics based on statistical parameters. This

procedure consists of dividing the components into non-overlapping segments of 1 s (169

data samples) and the metric is separately computed for each segment2;7;30. In case

a certain fraction of the segments of a component exceeds a predefined threshold, the

component is marked for removal2;7;30. The distributions derived from the ‘segment’

approach were normalized to zero mean and standard deviation (SD) equal to 1 with

respect to all components extracted with the same BSS algorithm and epoch length2;7;30.

A component is marked as artifact if 30% or more of its segments exceeds a value of ±2.0

after the normalization7. This criterion is more restrictive than the commonly used one

that consisits of rejecting a BSS source if 20% or more of its segments exceeded a value

of ±1.642, and it aims at minimising the false positives in the artifact detection7.

3.4.1 Cardiac Artifact

The following metrics are used in the detection of cardiac components.

Skewness (Skew). Skewness (Skew) is used to detect CAs isolated in BSS compo-

nents7;12;35. Skew is the normalized third central moment of the amplitude distribution

of the signal. Only if the amplitude distribution is symmetrical, Skew is zero12. Thus,

large abs (Skew) values, where abs (·) denotes absolute value, are associated with asym-

metric components, which may be due to cardiac activity12.

8



Variance of the scalp distribution (VarSc). The scalp distributions associated with

CA may have small variance35. Hence, this metric is computed as the variance of the

column vectors of Â associated with each component35. Due to the fact that this metric

intends to detect components whose scalp distribution has extremely low variance and

that the CA always appears in the recordings12, the component with the minimum value

of VarSc for each signal epoch is marked for rejection.

Kurtosis Excess (KrE). Kurtosis has been used in several studies to recognize di-

verse artifacts, including CA and OA2;7;12;30. Kurtosis Excess (KrE) is derived from the

normalized fourth central moment of the amplitude distribution. KrE is negative for

sub-Gaussian amplitude distributions. Alternatively, KrE is positive for super-Gaussian

ones2;9;12. Extreme values of KrE are related to abnormal components. KrE is tested in

the rejection of all kind of artifacts considered in this study.

Shannon Entropy (ShEn). Entropy measures the disorder, or irregularity, in a signal.

Higher entropy values correspond to more unstructured signals. On the other hand, small

entropy values correspond to components whose amplitude distributions are contained in

few limited intervals with high probabilities, as it happens in certain types of artifacts2;7.

Thus, the well-known Shannon Entropy (ShEn) is used to mark BSS components with

all types of artifacts considered in this study.

Rényi Entropy (RéEn). ShEn can be replaced with Rényi Entropy (RéEn) in the

detection of artifactual components30. A quadratic entropy index (q = 2) is used to put

equal emphasis on all data points regardless of their probability density30. This metric

is tested in the detection of CA, OA, and PLN.

Approximate Entropy (ApEn). Another entropic measure able to detect artifactual

components in MEG activity is Approximate Entropy (ApEn)31. ApEn quantifies the

regularity of a sequence and is expected to be small for non-cerebral biological signals,

such as CA and OA31. A run length and a tolerance window must be specified to compute
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it. In this case, ApEn is computed with a run length of 2 and a tolerance window of 0.2

times the SD of the signal31. ApEn is tested to detect CA, OA, and PLN.

Skew, KrE, ShEn, RéEn, and ApEn are applied to the components following the

previously introduced ‘segment approach’.

Constrained Blind Extraction of the CA. A cBSS approach is also taken to re-

move the CA from the MEGs21. The cBSS extracts components characterized by having

minimal dependence and being similar to a reference signal19;21. The reference – r (t) –

for the cBSS is computed considering that MEG background activity was acquired. The

background brain activity spreads over a relatively broad range of frequencies. On the

other hand, the CA introduces synchronous peaks in all MEG channels. Thus, the activ-

ity recorded at each time instance at all 148 MEG channels is averaged. The resulting

signal resembles an Electrocardiogram (ECG) because this averaging process emphasizes

the CA that contaminates all channels and tends to cancel out the brain activity12. Yet,

the average of all MEG channels is not a pure cardiac signal since some other activities

may also appear in it. Fortunately, the reference for the cBSS only needs to capture the

main temporal features of the signal of interest21. Hence, the actual r (t) fed to the cBSS

algorithm is created as a binary signal with 1’s where the R-peaks of the cardiac activity

appear in the average signal and 0’s elsewhere. Once this binary reference signal has been

obtained, it is used with a cBSS algorithm to extract a component that accounts for the

CA. Then, this component is subtracted from the recordings19;21.

3.4.2 Ocular Artifact

The reduction in the OA is also quantified. The ocular components share some charac-

teristics with the CA (e.g., extreme values of kurtosis or entropy). Thus, KrE, ShEn,

RéEn, and ApEn are also used to mark OA2;7;30;31. Additionally, two metrics designed

ad hoc for the detection of the OA are tested. They are detailed below.

Power near the eyes (Peyes). The power of the OA is mainly gathered near the

eyes. Hence, the scalp distribution of the components is used in the detection of this
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artifact12;14;28. We compute a metric (Power near the eyes, Peyes) as the fraction of the

power located on the 13 frontal peripheral channels nearer to the eyes12. We intend to

detect components whose Peyes is extremely high. Yet, not all signal epoch are contam-

inated with OA. Therefore, in order to minimize the removal of non-artifactual activity,

the values of Peyes are normalized to zero mean and SD = 1 with respect to all compo-

nents derived from the same BSS method and epoch length7. Then, following7, we set

the detection threshold to +3.5 as this level is applied to a statistic derived from the full

signal segment and we expect the OAs to be characterized with very high Peyes values.

Power in Low Frequencies (Plf). The energy of the OA appears in low frequen-

cies12;14;24. Thus, we compute the fraction of the Power Spectral Density (PSD) that

each BSS component has from 0.5 Hz to 2.5 Hz (Power in Low Frequencies, Plf )12. Sim-

ilarly to Peyes, the values of Plf are normalized to zero mean and SD = 1 with respect

to all the relevant components. Then, the detection threshold is set to +3.5 to minimize

the amount of lost brain activity7.

3.4.3 Power Line Noise

Due to the expected rhythmic nature of the PLN, its amplitude distribution is different

from a typical brain signal. Hence, KrE, ShEn, RéEn, and ApEn are employed in its

detection31. In addition, the following metric is tested.

Power at the Line Frequency (P50). If a component completely isolates PLN, its

spectrum will be centered at the power line frequency (50 Hz in this case)12;25;27. Hence,

we calculate a spectral metric (P50) that measures the fraction of the PSD contained from

49.5 Hz to 50.5 Hz for each component12. Large values of P50 are due to BSS components

that have most of their energy round 50 Hz. For each BSS algorithm and epoch length,

all P50 values are normalized to zero mean and SD 1 and a threshold of +3.5 is applied,

following a similar reasoning to that of Peyes.
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3.5 Artifact Removal Evaluation

It is of paramount importance to quantify the reduction in the artifactual activity in real

brain signals without time-consuming visual inspections. The evaluation criteria applied

to achieve this goal are described in the following lines. By comparing the values of these

criteria before and after the BSS-based artifact removal, it is possible to evaluate the

amount of removed artifactual activity.

3.5.1 Cardiac Artifact

In order to assess the CA removal, we detect the QRS-complexes in the average of all

148 MEG channels in the same way as it was done to compute the reference for the

cBSS12. Therefore, the R-peaks are located in the average signal before the artifact

rejection process and an average QRS-complex is estimated before and after each artifact

removal12. Then, the importance of the CA is characterized with the Peak-to-Peak

Amplitude (App)12;31 and the Root Mean Square (RMS) value7 of the mean QRS complex

for each subject.

3.5.2 Ocular Artifact

The evaluation of the OA removal is more complex than the cases of the CA and PLN.

The ocular activity does not appear in all MEG epochs. However, the effects of the

BSS artifact rejection procedure on the MEG signals can still be quantified. For every

signal epoch, the average PSD is computed at the subset of 18 MEG channels located

over the anterior part of the head and close to the eyes and at the remaining set of

130 channels. It is important to note that the first subset of channels is not equal to

that used in the metric Peyes to avoid biasing the results. The subtraction of those two

PSDs computed over completely disjoint sets of channels shows the difference between the

activity recorded over those two areas as a function of frequency. Hence, one calculates

the difference between the PSDs from 0.5 Hz to 6.5 Hz as most of the OA energy is

located at low frequencies34. Additionally, an amplitude threshold is set in the MEG

recordings to count the number of peaks in the signals whose amplitude is above ±2 pT
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before and after the artifact removal. This measurement is computed as an indication of

the suppression of peaks in the recordings31. The threshold is set at ±2 pT as a good

trade-off between avoiding the detection of CA R-waves and the number of detected peaks

in the MEGs.

3.5.3 Power Line Noise

The reduction of the PLN is assessed by calculating the mean of the PSD and normalized

PSD (PSDn) of the MEGs before and after the artifact rejection and inspecting the

amount of power contained between 49 Hz and 51 Hz12.

4 Results

This Section contains the results of the objective evaluation of the artifact removal in

real MEG epochs. Due to the high number of combinations of BSS algorithm, epoch

length, artifact detection metric, and evaluation criteria, only a summary of the results is

presented here. We have focused on the most remarkable cases trying to illustrate large

and small reductions in the artifacts. For the sake of completeness, all numerical results

are compiled into the Tables presented in the Appendix, which the interested reader is

referred to.

First of all, it was necessary to measure the level of the artifacts in the original MEG

recordings. This enabled us to have reference values for an objective assessment of the

artifact removal12. Therefore, the metrics described in Section 3.5 were applied to the

MEG signals before any kind of BSS processing. The presence of the CA was evaluated

considering the amplitude and power of the average QRS complex found in the MEGs.

R-peaks were located in the average of all 148 MEG channels12, and App and RMS

values were computed for the original MEGs. Fig. 1 depicts the average QRS complex

computed from all subjects for epochs of 10 s. As it can be seen in Fig. 1, the CA

is considerably strong in the MEG recordings and, on average, introduces well-defined

peaks in the MEG recordings. As for the OAs, an amplitude threshold of ±2 pT was

13



set to count the number of these ‘high-amplitude’ peaks in the recordings31. An average

PSD ‘discrepancy’ measure was also computed to consider the increase in the power of

low frequencies near the eyes due to the OA. Fig. 2 illustrates this spectral measure for

epochs of 20 s and it shows the increase in low frequency power near the eyes. Finally,

the assessment of the PLN power in the MEGs was performed by calculating the power

between 49 Hz and 51 Hz in the PSD and PSDn. An illustration of this part of the

spectra is shown for epochs of 60 s in Fig. 3, which clearly reveals the contamination with

a harmonic at the power line frequency. Other epoch lengths than those represented in

Fig. 1, Fig. 2, and Fig. 3 have almost identical levels of CA, OA, and PLN contamination.

++ PLEASE, INSERT FIGs. 1, 2, AND 3 AROUND HERE ++

After the computation of the values that indicated the average artifact level in the

original MEGs, the actual process of artifact removal started. The preprocessing and

dimension reduction techniques indicated in Section 3.2 were applied to MEG epochs

of 10 s, 20 s, 40 s, 60 s, and 90 s. The optimum number of inner components (l) was

estimated with the MDL. The results of the preprocessing stage are reported elsewhere10.

Then, the BSS algorithms described in Section 3.3 were used to decompose the recordings.

In addition, a cBSS algorithm was used to extract the cardiac contamination from the

recordings and then cancel it out by subtracting its projection21.

Once the decomposition had been performed, the next step was to apply the artifact

detection criteria specified in Section 3.4. This enabled us to automatically label the

sources with abnormal values of those metrics as artifacts. Of note is that KrE, ShEn,

RéEn, and ApEn were used to detect all types of artifacts included in this study. Finally, a

reconstruction of the MEGs was calculated by means of Eq. 3 and the measures to evaluate

the amount of artifacts were applied to these reconstructed signals. It is important to

bear in mind the results computed for the original recordings and Fig. 1, Fig. 2, and

Fig. 3 to assess how much artifactual activity was removed in each case.

For the assessment of the CA removal, the App and RMS values were calculated from

the locations where the R-peaks appeared in the raw recordings (see Section 3.5.1). These

numeric results, together with those for the OA and PLN, are given in the Appendix.
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Moreover, a few representative cases of larger and smaller reductions of the CA are il-

lustrated in Fig. 4, which depicts the remainder of the QRS complex after the artifact

removal. Large reductions in the CA were achieved with several combinations of BSS al-

gorithm, epoch length, and artifact detection criteria. These include the use of eInfomax

with KrE on epochs of 90 s, FastICA with Skew on epochs of 60 s or a cBSS approach

on epochs of 10 s. The reduction in the power of the CA is apparent with this tech-

niques, since the maximum amplitude of the CA decreased in approximately one order of

magnitude thanks to the BSS artifact removal. On the other hand, SOS-BSS techniques

tended to offer smaller reductions in the CA. It must be noted that the amplitude ranges

of Fig. 1 and the subplots of Fig. 4 are different.

++ PLEASE, INSERT FIG. 4 AROUND HERE ++

Regarding the OA removal, two criteria were proposed in Section 3.5.2 to evaluate

how the BSS modified the MEG signals and the influence of the OAs on them. The first

one was based on counting the number of peaks exceeding ±2 pT. These numeric results

are given in the Appendix. The second criterion considered the difference between two

subsets of channels in a particular spectral band. This spectral difference is illustrated

in Fig. 5 for a few representative cases of larger and smaller reductions in low frequency

power near the eyes. The spectral discrepancy was decreased with approaches like SOBI

and Peyes for epochs of 60 s, SOBI and ApEn for epochs of 20 s or AMUSE and Plf

for epochs of 90 s. In these cases, the energy of this spectral discrepancy decreased to

about 50% due to the use of the BSS approaches, as it can be seen in comparison with

Fig. 2. Of note is that the scales of these two figures differ. On the other hand, Fig. 5

also illustrates cases for which the OA removal strategies did not decrease the amount

of power in low frequencies near the eyes, such as FastICA and Peyes on epochs of 60 s,

AMUSE and KrE on epochs of 60 s or JADE and ApEn on 20 s.

++ PLEASE, INSERT FIG. 5 AROUND HERE ++

Finally, the effectiveness of the reduction in the PLN with a BSS-based artifact re-

moval was measured in the frequency domain. We considered the power of the PSD
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and PSDn around 50 Hz, as indicated in Section 3.5.3. Fig. 6 offers visual information

about the reduction in the PLN for four cases. Two of them show a clear decrease in the

harmonic at 50 Hz (AMUSE and P50, and JADE and ApEn, in both cases for epochs

of 60 s), whereas the other two are representative of smaller diminishings: eInfomax and

P50, and AMUSE and RéEn, also for epochs of 60 s. A comparison of Fig. 3 with Fig. 6,

which were plotted with different amplitude scales, reveals a reduction slightly larger

than one order of magnitude in the power of harmonic at 50 Hz with the best BSS-based

PLN removal procedures. Furthermore, this procedures avoid the distortion that spectral

filtering could have introduced in the signals.

++ PLEASE, INSERT FIG. 6 AROUND HERE ++

5 Discussion and Conclusions

We compared widespread BSS algorithms and artifact detection metrics in terms of their

ability to reduce the CA, OA, and PLN in real MEG recordings from 26 elderly subjects

for several epoch lengths. Our aim was to objectively quantify the artifact removal

without having to rely on visual inspections of the data, which are subjective and time-

consuming. The results showed a clear reduction in the amount of CA and PLN in the

signals thanks to the BSS artifact removal, whereas the OA results also pointed to a

reduction of this kind of artifact but they were more difficult to assess.

The BSS techniques were applied after a preprocessing and model order selection10;12.

This preprocessing was also used before the cBSS in order to ensure that all decomposition

or extraction methods were applied to the same input data. After the BSS, several artifact

detection metrics and criteria helped to identify the potential artifacts.

None of the artifact removal strategies tested in this study relies on the recording

of auxiliary signals, such as the ECG and EOG. This is a remarkable advantage when

recording brain activity from elderly people, who may suffer from some level of cognitive

impairment, infants, and non-collaborative subjects in general. On the other hand, the

lack of these auxiliary signals hinders the evaluation of the artifact removal. For instance,
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if the EOG had been acquired, it would have been possible to inspect the MEGs around

the OAs captured in that signal7. This issue is less problematic in the case of the

CA because background MEG activity was analyzed. Thus, the average of all MEG

channels tended to emphasize this artifact12. Therefore, the fact that auxiliary signals

were not included in the analysis makes the evaluation of the artifact removal (especially

the OA) more difficult and limits the results. However, this makes our findings directly

applicable to situations where the auxiliary signals either can or cannot be recorded.

Moreover, it should be borne in mind that we aimed at performing a completely automatic

quantification of the artifact removal, without visual inspections of the signals.

Several publications have tried to remove the CA in MEG data with diverse ap-

proaches, including higher order statistics and entropy measures2;7;31, correlation2, phase

information7, variability of the scalp maps35, and asymmetry12;35. Considering these

studies, we selected a few metrics to label the CA. Among them, Skew and VarSc were

only applied to the detection of the CA, while KrE, ShEn, RéEn, and ApEn were tested

on the detection and removal of all types of artifacts on the basis of previous stud-

ies2;7;30;31. On the other hand, cBSS can extract artifactual activity if a suitable reference

is available21.

The OA removal with BSS has received considerable attention in MEG2;7;12;32 and,

particularly, EEG24;25;27;28;33–36. The metrics used to detect the OA have been based on to-

pographic information12;28;32, correlation2;24, thresholding36, and higher-order statistics7.

The diverse types of signals and evaluation methodologies make the direct comparison

of the results difficult. Hence, we compared straightforward criteria (Peyes, Plf , KrE,

ShEn, RéEn, and ApEn) in the OA detection. Peyes and Plf identified less components

as artifacts, although it must be noted that the other criteria were supposed to pinpoint

all types of contamination. The MEGs were recorded while the subjects had their eyes

closed. Hence, the number of blinks and fast eye movements could be reduced but the

power in the α band could have increased as a result. Moreover, the lack of a visual

reference might increase the low-frequency eye movements6. Despite the fact that this

might induce artifacts in the recordings, the metric Plf , which detects low frequencies,
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might deal with this situation. Nonetheless, the application of this metric to open-eyes

settings may not be straightforward12.

The reduction of the PLN is typically done by spectral filtering but another approach

is needed when the spectral band of interest overlaps with the power line frequency25.

The detection of the PLN components was done by taking into account the power around

50 Hz12. Similar criteria have been introduced27, although the PLN removal was not

measured individually.

Most artifact detection criteria were applied to ‘segments’ of BSS components2;7;17;30.

In order to minimize the amount of removed brain components, we only marked a BSS

source as an artifact if 30% or more of its segments exceeded a threshold value of ±2.0

once the detection metric had been normalized to zero mean and SD = 17. This criterion

decreases the amount of removed artifactual activity but it safeguards the brain activity7.

Furthermore, this type of criteria is appropriate to label cases for very unbalanced data.

The detection metrics aiming at labelling all artifacts marked less components for re-

moval than the combination of the metrics designed for a specific kind of contamination.

This suggests that the former, by trying to recognize different artifacts, may lose some

sensitivity to the undesired sources.

On the basis of the results, Table 1 indicates a few of the best combinations of BSS

algorithm, epoch length, and artifact detection metric that offered the largest artifact

reduction. These data are expressed as the ratio of the values of the corresponding

metric after and before the artifact removal. The list shown in Table 1 accounts for

some of the combinations illustrated in Fig. 4, Fig. 5, and Fig. 6. Nonetheless, it is not

exhaustive as slight modifications (i.e., shorter or longer epoch lengths or using RéEn

instead of ShEn) offer similar levels of artifact reduction, something that suggests high

consistency in the performance of the BSS-based artifact removal. Nonetheless, Table 1

provides an indication of which specific combinations of BSS algorithm, epoch length,

and artifact detection metric are best suited for CA, OA, and PLN with respect to the

applied criteria.

++ PLEASE, INSERT TABLE 1 AROUND HERE ++
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Table 1 suggests that metrics specifically designed for the detection of each type of

artifact might be superior to criteria used to deal with all kinds of artifacts. Yet, in

situations where all forms of artifacts are expected, it may be desirable to apply just

one procedure able to reduce all artifacts. In order to further clarify the results and to

address this issue, Table 2 presents a summary of the performance achieved with various

BSS algorithms and artifact detection metrics. Considering that, overall, the effect of

the epoch length in the performance of the artifact removal was far less important than

that of the interaction between the BSS algorithm and the artifact detection metric, we

averaged the performance of all combinations tested in this study over all epoch lengths

(results shown in the Appendix). Then, we further summarized the results by showing

in Table 2 only the results for one HOS- and one SOS-BSS algorithm for every ‘general’

detection criterion. For the specific artifact labeling methods, only the results of the

BSS algorithm with the highest artifact removal are given. The algorithms were selected

as those that achieved the greatest performance in the highest number of cases. The

selection of one HOS- and one SOS-BSS technique was motivated by the fact that the

decomposition calculated with AMUSE and SOBI tend to be more similar than those of

JADE, eInfomax, and FastICA, and vice versa10.

++ PLEASE, INSERT TABLE 2 AROUND HERE ++

In general, FastICA seems to be the HOS-BSS method with the highest removal ratios

for all forms of artifacts. This agrees with a previous study on the consistency of the

BSS of MEG signals10. On the other hand, the results suggests a slight superiority of

SOBI over AMUSE. Table 2 also confirms that the specifically designed detection criteria

may provide larger artifact removal than the ‘general’ ones. Furthermore, the results

indicate that, most often, HOS-BSS algorithms are able to remove large fractions of the

CA. The cBSS procedure is relatively simple and can reject most of the CA as well. The

App and RMS values decreased from about 0.750 and 0.120 to around 0.100 and 0.028,

respectively, after the artifact removal procedure. The CA is often characterized by having

highly asymmetrical and super-Gaussian amplitude distributions12, which are relatively

easy to extract with cBSS or with HOS-BSS. As for the OAs, the SOS techniques may
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be better suited for this form of contamination, something that is in agreement with

previous studies33;34. By comparing Fig. 2 and Fig. 5, it is clear that some BSS-based

artifact rejection procedures caused a reduction in the amount of low frequency power at

the channels close to the eyes. Additionally, the number of peaks with extreme values also

decreased notably. In the case of the PLN, the highest levels of removal were achieved

with the ApEn and, specially, P50 metrics almost independently on the BSS algorithm.

When observing the results, it must be noted that the real reduction in power between

49 Hz and 51 Hz is given by the total power measure. This is due to the fact that the

normalized power depends on the amount of power in the whole frequency range, which

is also affected by the removal of CA or OAs. Moreover, the actual reduction in peak

at 50 Hz is higher than the ratios indicated in Table 1 and Table 2 since these metrics

account for the change in power in a 2 Hz band (49 Hz to 51 Hz). Actually, the power

at 50 Hz is reduced about 30 times (i.e., about 14.7 dB). All these findings suggest that

none of the approaches is optimal for all forms of artifacts. Therefore, the selection of

the strategy to reduce the contamination should rely on a priori knowledge about which

is the most prominent artifact in the recordings to be cleaned.

A few publications have addressed the artifact removal (particularly the CA and OA)

in MEGs with BSS2;7;21;31;32. In most cases, the performance was only illustrated with a

few visual examples2;21;32. The quantification of the CA removal by Mantini et al. showed

a ratio of the App after and before the procedure of about 0.158 (computed averaging the

results given in31). Slightly better values than this one were found in this study (see

Table 1 and Table 2). Additionally, Dammers et al. reported rejection performances in

terms of RMS of about 80% to 90% around the R-peaks and blinks located in reference

channels7. Nonetheless, the comparison of BSS artifact removal on the basis of previous

studies is difficult due to the different databases. For this reason, we applied several

approaches to a common and independent dataset of MEG signals.

Some limitations of this study deserve attention. The significance of results is limited

by the size of the database (26 subjects). However, this size is similar to, or even larger

than, that of other EEG30;35;36 and MEG2;7;12;21;31;32;40 studies. Additionally, the MEG
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activity was recorded from elderly people (mean age = 71.77 years). In this age group,

the identification of CA may be more challenging due to the possible presence of ventric-

ular extrasystoles. However, the extension of our results to younger subjects might not

be straightforward. In any case, our findings can directly be applied to elderly people.

Additionally, by the own nature of MEG, the actual sources that originated the brain

recordings are unknown. Hence, assessing the performance of the BSS is not straightfor-

ward as the separation cannot be absolutely validated22;39. Yet, it is indeed possible to

compare the brain signals before and after the artifact removal to gain quantitative in-

formation about how much artifactual activity has been rejected7;12;31. However, further

analyses, including a visual evaluation of the artifact removal, are needed to confirm that

the most promising combinations of BSS algorithm, epoch length, and artifact detection

metric did not remove brain activity. This is particularly the case for the OAs since

some of the detection criteria might be sensitive to frontal brain activity12. Moreover,

the threshold of ±2 pT used in the evaluation of the artifact rejection may need to be

changed if event-related activity is analyzed instead of background one. Nevertheless, re-

cent results suggest that the BSS artifact removal does not denature the electromagnetic

brain recordings38. On the contrary, the ability of the EEG signals to distinguish control

subjects from Alzheimer’s Disease patients increased after the artifact removal38.

In sum, the objective assessment of the artifact removal in MEG background activity

suggested the utility of several combinations of BSS algorithm and specific artifact detec-

tion metric. For its simplicity, the cBSS scheme is considered a very suitable approach

to remove the CA as its performance ranked among the best in the reduction of this

artifact. The OA reduction was the most difficult to evaluate. However, the evaluation

results suggested that the combination of artifact detection metrics such as ApEn, Peyes,

and, specially, Plf with SOS-BSS techniques was helpful to reduce the OA. Finally, the

PLN was substantially removed by means of the specific metric P50.
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Table 1: Summary of the changes (expressed as ratios) in the metrics to assess the artifact
removal for some of the best combinations of BSS algorithm, epoch length, and artifact
detection criterion. Lower ratios indicate the removal of larger amounts of artifacts.

Ratios of the metrics evaluating the CA
Metric Length BSS method App RMS

– 10 s cBSS 0.1335 0.1963
Skew 60 s FastICA 0.1626 0.2437
VarSc 10 s FastICA 0.1572 0.2513
KrE 90 s eInfomax 0.1354 0.2258
ShEn 60 s eInfomax 0.1238 0.2132

Ratios of the metrics evaluating the OA
Metric Length BSS method Number of peaks Spectral discrepancy
Peyes 60 s SOBI 0.6158 0.4137
Plf 90 s AMUSE 0.1589 0.4357

ApEn 20 s SOBI 0.2848 0.4011
Plf 20 s eInfomax 0.5858 0.5263

Ratios of the power from 49.5 Hz to 50.5 Hz to evaluate the PLN
Metric Length BSS method Total power Normalized power

P50 60 s AMUSE 0.2039 0.1850
ApEn 60 s JADE 0.2551 0.3178

Table 2: Summary of the changes, expressed as ratios and averaged over all five epoch
lengths, in the metrics used to assess the artifact removal. Lower ratios indicate the
removal of larger amounts of artifacts. Only the results of one SOS- and one HOS-BSS
are specified for each of the artifact detection techniques (‘Detect. crit.’) that deal with
all kinds of artifacts. For a comprehensive list of the results, the reader is referred to the
Appendix.

Detec. BSS CA OA PLN
crit. alg. App RMS # peaks Discrepancy PSD power PSDn power
KrE SOBI 0.5611 0.5511 0.4827 0.8653 0.9997 1.2025
KrE FastICA 0.1451 0.2419 0.4899 0.8793 0.9963 1.3152
ShEn SOBI 0.5299 0.5258 0.4005 0.7382 0.9994 1.2165
ShEn FastICA 0.1382 0.2365 0.4587 0.8264 0.9960 1.3188
RéEn SOBI 0.5340 0.5284 0.3384 0.6498 0.8630 0.9948
RéEn FastICA 0.1401 0.2374 0.4514 0.8072 0.9962 1.3186
ApEn SOBI 0.7801 0.6833 0.3597 0.4918 0.3701 0.5119
ApEn eInfomax 0.2720 0.3226 0.3153 0.6966 0.5995 0.6802

cBSS 0.1618 0.2209 – – – –
Skew FastICA 0.1676 0.2572 – – – –
VarSc FastICA 0.2065 0.3124 – – – –
Peyes SOBI – – 0.6841 0.5739 – –
Plf AMUSE – – 0.3642 0.4374 – –
P50 AMUSE – – – – 0.2094 0.1935
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Figure 1: Average QRS complex in the original MEG recordings for epochs of 10 s. The
QRS complex becomes apparent after averaging the MEG channels and illustrates the
strength of this artifact in the signals.
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Figure 2: Median of the difference between the PSDs for the two subsets of MEG channels
used to compare the impact of OAs in the MEG recordings for epochs of 20 s. The large
positive values of this spectral metric, especially below 4 Hz, highlight the presence
of increased low frequency activity at the channels near the eyes in the original MEG
recordings.
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Figure 3: Average spectra between 49 Hz and 51 Hz computed from epochs of 60 s. It
can be seen that the PLN introduces a clearly visible harmonic at 50 Hz in the original
MEG recordings.

28



−0.2 −0.1 0 0.1 0.2

−0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

Time (s)

A
m

pl
itu

de
 (

pT
)

FastICA, 60, Skew
FastICA, 10, VarSc
eInfomax, 90, KrE
eInfomax, 60, ShEn
cBSS, 10 s

(a) Examples of larger CA removal.
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(b) Examples of smaller CA removal.

Figure 4: Examples of larger (a) and smaller (b) reductions in the average QRS complex
after the BSS-based CA removal. Panel (a) depicts the combinations of FastICA and
Skew on epochs of 60 s, FastICA and VarSc on epochs of 10 s, eInfomax and KrE on
epochs of 90 s, eInfomax and ShEn on epochs of 60 s, and cBSS on epochs of 10 s, which
largely reduced the CA. On the other hand, examples of smaller CA removal include
AMUSE and Skew on epochs of 20 s, AMUSE and VarSc on epochs of 90 s, SOBI and
KrE on epochs of 10 s, SOBI and RéEn on epochs of 90 s, and, to a lesser extent,
FastICA and ApEn on epochs of 60s – see Panel (b). The reduction in the CA is obvious
comparing this signals with that of Fig. 1, as the maximum amplitude decreased from
0.6 pT to 0.06 pT.
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(a) Examples of larger OA removal.

2 4 6 8 10 12
0

1

2

3

4

5

6

7
x 10

−4

Frequency (Hz)

D
iff

er
en

ce
 b

et
w

ee
n 

P
S

D
s 

(p
T2 /H

z) FastICA, 60, P
eyes

AMUSE, 60, KrE
JADE, 20, ApEn
eInfomax, 90, KrE

(b) Examples of smaller OA removal.

Figure 5: Examples of larger (a) and smaller (b) reductions in the median of the spectral
discrepancy measure near the eyes after the BSS-based OA removal. Panel (a) depicts
some of the combinations that provided large reductions in the low frequencies: SOBI
and Peyes on epochs of 60 s, SOBI and ApEn on epochs of 20 s, AMUSE and Plf on
epochs of 90 s, and eInfomax and Plf on epochs of 20 s. Panel (b) illustrates some of
the combinations which offered small reductions in the discrepancy, namely FastICA and
Peyes on epochs of 60 s, AMUSE and KrE on epochs of 60 s, JADE and ApEn on 20 s, and
eInfomax and KrE on epochs of 90 s. In comparison with Fig. 2, the spectral discrepancy
decreased, at least, to one half in the best cases.
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(a) Examples of larger PLN removal.
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(b) Examples of smaller PLN removal.

Figure 6: Examples of larger (a) and smaller (b) reductions in the average spectra centered
at the PLN frequency after the BSS-based PLN removal. Panel (a) represents clear
reductions in power at 50 Hz. These were achieved with AMUSE and P50 on epochs of
60 s and JADE and ApEn on epochs of 60 s. Panel (b) exemplifies less successful PLN
removal strategies: eInfomax and P50 on epochs of 60 s and AMUSE and RéEn on epochs
of 60 s. By contrasting Fig. 6 with Fig. 3, it is clear that the best combinations decreased
the power at 50 Hz by more of one order of magnitude without distorting the spectrum
around this frequency.
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