960 research outputs found

    Social media adoption in higher education: a case study involving IT/IS students

    Get PDF
    This paper discusses the adoption and use of social media in Higher Education (HE). The aim of the research reported in this paper was to identify the main factors and problem areas in the adoption and use of social media in HE. Our study included a survey involving students of Information Technology and Information Systems in Greece and in Finland. In order to verify the findings from the survey, a follow-up survey was also undertaken. The unified technology adoption approach was identified to be a suitable underlying theory for this study. The analysis of viewpoints of students was needed in order to understand converging and diverging viewpoints. The results showed that infrastructure is the most important issue in the planning of learning/teaching activities based on social media, followed by the role of social influence. Based on the analysis, guidelines for planning social-media-based learning activities are proposed. Indications of further work complete the paper

    Energetics of positron states trapped at vacancies in solids

    Get PDF
    We report a computational first-principles study of positron trapping at vacancy defects in metals and semiconductors. The main emphasis is on the energetics of the trapping process including the interplay between the positron state and the defect's ionic structure and on the ensuing annihilation characteristics of the trapped state. For vacancies in covalent semiconductors the ion relaxation is a crucial part of the positron trapping process enabling the localization of the positron state. However, positron trapping does not strongly affect the characteristic features of the electronic structure, e.g., the ionization levels change only moderately. Also in the case of metal vacancies the positron-induced ion relaxation has a noticeable effect on the calculated positron lifetime and momentum distribution of annihilating electron-positron pairs.Comment: Submitted to Physical Review B on 17 April 2007. Revised version submitted on 6 July 200

    Numerical and experimental verification of a theoretical model of ripple formation in ice growth under supercooled water film flow

    Full text link
    Little is known about morphological instability of a solidification front during the crystal growth of a thin film of flowing supercooled liquid with a free surface: for example, the ring-like ripples on the surface of icicles. The length scale of the ripples is nearly 1 cm. Two theoretical models for the ripple formation mechanism have been proposed. However, these models lead to quite different results because of differences in the boundary conditions at the solid-liquid interface and liquid-air surface. The validity of the assumption used in the two models is numerically investigated and some of the theoretical predictions are compared with experiments.Comment: 30 pages, 9 figure

    The Paradox of Fiction Revisited—Improvised Fictional and Real-Life Social Rejections Evoke Associated and Relatively Similar Psychophysiological Responses

    Get PDF
    Theatre-based practices, such as improvisation, are frequently applied to simulate everyday social interactions. Although the improvisational context is acknowledged as fictional, realistic emotions may emerge, a phenomenon labelled the ‘paradox of fiction’. This study investigated how manipulating the context (real-life versus fictional) modulates psychophysiological reactivity to social rejection during dyadic interactions. We measured psychophysiological responses elicited during real-life (interview) and fictional (improvisation exercises) social rejections. We analysed the heart rate (HR), skin conductance, facial muscle activity, and electrocortical activity (electroencephalographic (EEG) alpha asymmetry) of student teachers (N = 39) during various social rejections (devaluing, interrupting, nonverbal rejection). All social rejections evoked negative EEG alpha asymmetry, a measure reflecting behavioural withdrawal motivation. Psychophysiological responses during real-life and fictional rejections correlated, and rejection type modified the responses. When comparing responses across all rejection types, facial muscle activity and EEG alpha asymmetry did not differ between real-life and fictional rejections, whereas HR decelerated and skin conductance increased during fictional rejections. These findings demonstrate that regardless of cognitive awareness of fictionality, relatively subtle social rejections elicited psychophysiological reactivity indicating emotional arousal and negative valence. These findings provide novel, biological evidence for the application of theatre-based improvisation to studying experientially everyday social encounters

    Anthropogenic aerosol forcing - insights from multiple estimates from aerosol-climate models with reduced complexity

    Get PDF
    This study assesses the change in anthropogenic aerosol forcing from the mid-1970s to the mid-2000s. Both decades had similar global-mean anthropogenic aerosol optical depths but substantially different global distributions. For both years, we quantify (i) the forcing spread due to model-internal variability and (ii) the forcing spread among models. Our assessment is based on new ensembles of atmosphere-only simulations with five state-of-the-art Earth system models. Four of these models will be used in the sixth Coupled Model Intercomparison Project (CMIP6; Eyring et al., 2016). Here, the complexity of the anthropogenic aerosol has been reduced in the participating models. In all our simulations, we prescribe the same patterns of the anthropogenic aerosol optical properties and associated effects on the cloud droplet number concentration. We calculate the instantaneous radiative forcing (RF) and the effective radiative forcing (ERF). Their difference defines the net contribution from rapid adjustments. Our simulations show a model spread in ERF from -0.4 to -0.9 W m(-2). The standard deviation in annual ERF is 0.3 W m(-2), based on 180 individual estimates from each participating model. This result implies that identifying the model spread in ERF due to systematic differences requires averaging over a sufficiently large number of years. Moreover, we find almost identical ERFs for the mid-1970s and mid-2000s for individual models, although there are major model differences in natural aerosols and clouds. The model-ensemble mean ERF is -0.54 W m(-2) for the pre-industrial era to the mid-1970s and -0.59 W m(-2) for the pre-industrial era to the mid-2000s. Our result suggests that comparing ERF changes between two observable periods rather than absolute magnitudes relative to a poorly constrained pre-industrial state might provide a better test for a model's ability to represent transient climate changes.Peer reviewe

    Effects of Improvisation Training on Student Teachers’ Behavioral, Neuroendocrine, and Psychophysiological Responses during the Trier Social Stress Test

    Get PDF
    Objectives Teaching involves multiple performance situations, potentially causing psychosocial stress. Since the theater-based improvisation method is associated with diminished social stress, we investigated whether improvisation lessened student teachers’ stress responses using the Trier Social Stress Test (TSST; preparatory phase, public speech, and math task). Moreover, we studied the influence of interpersonal confidence (IC) – the belief regarding one’s capability related to effective social interactions – on stress responses. Methods The intervention group (n = 19) received a 7-week (17.5 h) improvisation training, preceded and followed by the TSST. We evaluated experienced stress using a self-report scale, while physiological stress was assessed before (silent 30-s waiting period) and during the TSST tasks using cardiovascular measures (heart rate, heart rate variability [HRV]), electrodermal activation, facial electromyography (f-EMG), and EEG asymmetry. Hypothalamus-pituitary-adrenal (HPA-axis) reactivity was assessed through repeated salivary cortisol sampling. Results Compared to the control group (n = 16), the intervention group exhibited less f-EMG activity before a public speech and higher HRV before the math task. The low IC intervention subgroup reported significantly less stress during the math task. The controls showed a decreased heart rate before the math task, and controls with a low IC exhibited higher HRV during the speech. Self-reported stress and cortisol levels were positively correlated during the post-TSST preparatory phase. Conclusions These findings suggest that improvisation training might diminish stress levels, specifically before a performance. In addition, interpersonal confidence appears to reduce stress responses. The decreased stress responses in the control group suggest adaptation through repetition. Keywords: Improvisation; Anticipatory anxiety; Interpersonal confidence; Psychophysiology; Teacher education; Trier Social Stress TestPeer reviewe

    Analysis of electron-positron momentum spectra of metallic alloys as supported by first-principles calculations

    Get PDF
    Electron-positron momentum distributions measured by the coincidence Doppler broadening method can be used in the chemical analysis of the annihilation environment, typically a vacancy-impurity complex in a solid. In the present work, we study possibilities for a quantitative analysis, i.e., for distinguishing the average numbers of different atomic species around the defect. First-principles electronic structure calculations self-consistently determining electron and positron densities and ion positions are performed for vacancy-solute complexes in Al-Cu, Al-Mg-Cu, and Al-Mg-Cu-Ag alloys. The ensuing simulated coincidence Doppler broadening spectra are compared with measured ones for defect identification. A linear fitting procedure, which uses the spectra for positrons trapped at vacancies in pure constituent metals as components, has previously been employed to find the relative percentages of different atomic species around the vacancy [A. Somoza et al. Phys. Rev. B 65, 094107 (2002)]. We test the reliability of the procedure by the help of first-principles results for vacancy-solute complexes and vacancies in constituent metals.Comment: Submitted to Physical Review B on September 19 2006. Revised version submitted on November 8 2006. Published on February 14 200

    Brightening of the global cloud field by nitric acid and the associated radiative forcing

    Get PDF
    Clouds cool Earth's climate by reflecting 20% of the incoming solar energy, while also trapping part of the outgoing radiation. The effect of human activities on clouds is poorly understood, but the present-day anthropogenic cooling via changes of cloud albedo and lifetime could be of the same order as warming from anthropogenic addition in CO<sub>2</sub>. Soluble trace gases can increase water condensation to particles, possibly leading to activation of smaller aerosols and more numerous cloud droplets. We have studied the effect of nitric acid on the aerosol indirect effect with the global aerosol-climate model ECHAM5.5-HAM2. Including the nitric acid effect in the model increases cloud droplet number concentrations globally by 7%. The nitric acid contribution to the present-day cloud albedo effect was found to be −0.32 W m<sup>−2</sup> and to the total indirect effect −0.46 W m<sup>−2</sup>. The contribution to the cloud albedo effect is shown to increase to −0.37 W m<sup>−2</sup> by the year 2100, if considering only the reductions in available cloud condensation nuclei. Overall, the effect of nitric acid can play a large part in aerosol cooling during the following decades with decreasing SO<sub>2</sub> emissions and increasing NO<sub>x</sub> and greenhouse gases

    Prognosis of recurrent myocardial infarction based on shortliffe fuzzy models using the electrical characteristics of biologically active points

    Get PDF
    This report discusses the employment of the electrical characteristics of biologically active points (BAP) in the meridian of the heart to solve the task of prognosticating recurrence of myocardial infarctions during the rehabilitation period using fuzzy decision rule

    Positron localization effects on the Doppler broadening of the annihilation line: Aluminum as a case study

    Get PDF
    The coincidence Doppler broadening (CDB) technique is widely used to measure one-dimensional momentum distributions of annihilation photons, with the aim of obtaining information on the chemical environment of open-volume defects. However, the quantitative analysis of CDB spectra needs to include also purely geometrical effects. A demonstration is given here, on the basis of CDB spectra measured in quenched and in deformed pure aluminum. The comparison of the experimental results with ab initio computations shows that the observed differences come from the difference in free volume seen by positrons trapped in quenched-in vacancies or in vacancylike defects associated to dislocations. The computation reproduces accurately all details of CDB spectra, including the peak near the Fermi break, which is due to the zero-point motion of the confined positron.Peer reviewe
    corecore