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Abstract. Clouds cool Earth’s climate by reflecting 20 % of
the incoming solar energy, while also trapping part of the out-
going radiation. The effect of human activities on clouds is
poorly understood, but the present-day anthropogenic cool-
ing via changes of cloud albedo and lifetime could be of the
same order as warming from anthropogenic addition in CO2.
Soluble trace gases can increase water condensation to par-
ticles, possibly leading to activation of smaller aerosols and
more numerous cloud droplets. We have studied the effect
of nitric acid on the aerosol indirect effect with the global
aerosol-climate model ECHAM5.5-HAM2. Including the ni-
tric acid effect in the model increases cloud droplet num-
ber concentrations globally by 7 %. The nitric acid contri-
bution to the present-day cloud albedo effect was found to be
−0.32 W m−2 and to the total indirect effect−0.46 W m−2.
The contribution to the cloud albedo effect is shown to in-
crease to−0.37 W m−2 by the year 2100, if considering only
the reductions in available cloud condensation nuclei. Over-
all, the effect of nitric acid can play a large part in aerosol
cooling during the following decades with decreasing SO2
emissions and increasing NOx and greenhouse gases.

1 Introduction

Throughout industrialization humankind has injected in-
creasing amounts of greenhouse gases (GHGs) into the at-
mosphere and thereby induced anthropogenic global warm-
ing. However, there has been a simultaneous increase in
emissions of counteracting agents: aerosols and their pre-
cursors (e.g. SO2). Aerosols alter radiative fluxes directly
by scattering and absorbing radiation, and indirectly by act-
ing as cloud condensation nuclei (CCN) and altering cloud
properties (Twomey, 1977; Albrecht, 1989; Small et al.,
2009). The present-day anthropogenic aerosol forcing (direct
and cloud albedo effect) ranging from−0.5 to−2.2 W m−2

(Forster et al., 2007) acts to cool Earth’s climate, partly
masking the warming from e.g. increased CO2 concentra-
tion. The indirect aerosol effects (−0.5 to −1.9 W m−2 for
the cloud albedo effect,−0.3 to−1.4 W m−2 for the cloud
lifetime effect (Lohmann and Feichter, 2005)) are dominat-
ing the anthropogenic aerosol forcing over the direct effect
(−0.50± 0.40 W m−2 (Forster et al., 2007)).

Anthropogenic SO2 emissions increased from 2 Tg(SO2)
in year 1850 to 130 Tg(SO2) in 1970’s, but have already de-
creased about 20 % from the peak value due to emission reg-
ulations (Smith et al., 2011). In China, SO2 emissions in-
creased between 2000 and 2006 by 53 %, but have already
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shown a decreasing trend since 2006 (Lu et al., 2010). The
reductions of SO2 emissions due to air pollution control mea-
sures can cut global emissions even by 90 % until 2100 (van
Vuuren et al., 2007) which, together with reductions in pri-
mary particle emissions, would lead to a substantially weaker
aerosol cooling in the future (Andreae et al., 2005; Arneth
et al., 2009; Makkonen et al., 2012).

The future scenarios of NOx emissions show generally ei-
ther a stronger increase (Bauer et al., 2007; Adams et al.,
2001) or a weaker decrease (Lamarque et al., 2011) than
SO2 emissions. Nitrogen oxides are formed during fuel com-
bustion at high temperature and pressure, main sources be-
ing traffic, power generation and industry. In the IPCC sce-
nario IS92a, annual NOx emissions were estimated to in-
crease substantially from 28 Tg(N) (year 2000) to 72 Tg(N)
(year 2100). Later, the IPCC SRES scenarios showed a
large spread in emission estimates for the year 2100 (28–
151 Tg(N) yr−1 in the A1 scenario family). All SRES scenar-
ios expect an increase in NOx emissions for a few decades
(until 2040–2050), following stabilization (A1 and B2 sce-
nario families), decline (by NOx emission control technolo-
gies and alternatives for fossil-fuel) or continued increase un-
til 2100 (fossil-fuel intensive and high-population scenarios).
The NOx emission pathways for the next IPCC report emis-
sion scenario development (Lamarque et al., 2011) indicate
a range from 16 (van Vuuren et al., 2007) to 26 (Riahi et al.,
2007) Tg(N) for the year 2100, corresponding to a 30–60 %
decrease in NOx emissions from present-day levels. How-
ever, the ratio of global NOx/SO2 emissions is increasing
throughout the 21st century (Lamarque et al., 2011).

Nitrogen oxides are precursors of nitric acid. With enough
gas-phase ammonia available, ammonium nitrate can form
and partition to the aerosol phase. Although the present-
day aerosol load and direct forcing from nitrate aerosols is
considerably smaller than from sulfate aerosols (Liao et al.,
2004), the nitrate aerosols can play an important part in the
future.Adams et al.(2001) estimated that the nitrate aerosol
direct forcing forcing was only 20 % of the sulfate aerosol
forcing in the year 2000, but with the SRES A2 future emis-
sion scenario, the nitrate forcing could be 50 % stronger than
sulfate forcing in the year 2100.Bauer et al.(2007) reported
an increase of nitrate forcing from−0.11 to−0.14 W m−2

from present-day to the year 2030, although this was accom-
panied with an increase in sulfate forcing. InChen et al.
(2010), the sulfate burden decreased slightly from 2.87 to
2.74 Tg between the years 2000 and 2100, whereas the ni-
trate burden quadrupled from 0.67 to 2.88 Tg.

It has been suggested that the effects of nitrogen oxides
on clouds could be increasingly important with declining
SO2 emissions (Kulmala et al., 1995). Nitric acid can con-
dense on aqueous aerosols at relative humidities (RH) close
to and exceeding 100 % (Kulmala et al., 1997; Laaksonen
et al., 1998; Kokkola et al., 1993). During cloud formation,
RH increases relatively rapidly, and as it exceeds 100 %, the
largest aerosols start activating to cloud droplets. With still

increasing RH, smaller and smaller particles activate until
condensation of water to already activated particles depletes
water from the air, peak RH is reached, and further activa-
tion ceases, leaving still smaller particles unactivated. The
activated fraction of the total aerosol can vary from less than
1 % to close to 100 %, depending on ambient conditions, and
the concentration, size distribution and composition of the
aerosol itself. Nitric acid influences the activation process
because its condensation onto an aerosol particle increases
the particle’s hygroscopic mass and enables the particle to
activate at lower RH. Furthermore, the acid condenses more
efficiently to smaller particles with higher surface-to-volume
ratio, and as a result, a larger fraction of the aerosol is able to
activate (?Xue and Feingold, 2004). Recent ambient obser-
vations from a polluted region in China (with HNO3 mixing
ratios as high as 5 ppb) indicate that nitric acid contributes
to persistent clouds which may activate even at RH’s slightly
below 100 % (Ma et al., 2010), which is in agreement with
the earlier theoretical calculations ofKulmala et al.(1997)
andLaaksonen et al.(1998). Experimental evidence of the
role of HNO3 in cloud drop formation has also been obtained
by Henin et al.(2011).

Beyond nitric acid also other semi-volatile compounds af-
fect the cloud droplet formation. It has been shown that the
effect of nitric acid is enhanced by the co-condensation of
ammonia, which as a base neutralizes the solution and thus
condensation takes place at the lower relative humidity com-
pared to nitric acid condensation alone (Hegg, 2000; Ro-
makkaniemi et al., 2005a). With high enough concentrations
and/or low temperatures the co-condensation leads to the for-
mation of ammonium nitrate. However, as shown byRo-
makkaniemi et al.(2005b) it is difficult to estimate how much
ammonia enhances activation as partitioning of ammonia and
nitric acid between different sized particles is highly depen-
dent on the air mass history. Also some organic compounds
are semivolatile, and in the recent study it was shown that
they also have a lot of potential to affect cloud droplet for-
mation (Topping and McFiggans, 2012).

We study the effect of nitric acid condensation on cloud
droplet activation with a global climate model, and show the
importance of nitric acid on the present-day indirect forcing.
We also explore how the effect can change with projected
decreases in particle number concentrations.

2 Methods

2.1 Global aerosol-climate model ECHAM5.5-HAM2

We use the aerosol-climate model ECHAM5.5-HAM2
(Zhang et al., 2012) extended by a two-moment cloud mi-
crophysics scheme (Lohmann et al., 2007). The model hor-
izontal resolution is T42, corresponding to approximately
2.8◦ grid. We use 31 vertical levels, extending from the sur-
face to 10 hPa. Aerosols are activated as cloud droplets with
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the scheme of Abdul-Razzak and Ghan (Abdul-Razzak and
Ghan, 2000; Stier et al., 2012). The updraft velocity is cal-
culated from the grid-mean vertical velocity, turbulent ki-
netic energy and convectively available potential energy. The
aerosol microphysics model M7 (Vignati et al., 2004) con-
siders the dominant aerosol compounds: dust, sea salt, black
carbon, particulate organic matter and sulfate. Atmospheric
new particle formation is modeled with a parameterization
of binary water-sulphuric acid nucleation (Vehkam̈aki et al.,
2002). The aerosol model does not include nitrate aerosols.

The effect of nitric acid is parameterized according toRo-
makkaniemi et al.(2005a), based on results from a detailed
numerical air parcel model. The parameterization is applied
after the calculation of activated fraction without nitric acid
(F0). The parameterization calculates the activated fraction
(Fx) with a certain nitric acid volume mixing ratio from the
aerosol size distribution, gas phase nitric acid concentration,
temperature, total pressure, updraft velocity and the activated
fraction without nitric acid. The parameterization takes into
account the kinetic limitations of nitric acid and water con-
densation, and the effect of existing aerosol solubility. The
effect of nitric acid is considered only for two aerosol modes,
soluble Aitken and accumulation modes. Over continents,
the number concentration of coarse mode particles is rela-
tively small. In marine conditions, coarse mode sea-salt par-
ticles decrease the effect of HNO3 on cloud droplet number
concentrations (CDNC) (Romakkaniemi et al., 2005a). The
amount of nitric acid in nucleation mode can be considered
negligible in all conditions as particles are very small.

Natural emissions of sea salt (Schulz et al., 2004), dust
(Tegen et al., 2002) and DMS (Kettle and Andreae, 2000)
are calculated online, i.e. based on model meteorology.
Both eruptive (Halmer et al., 2002) and non-eruptive (An-
dres and Kasgnoc, 1998) volcanic sulfur emissions are in-
cluded. Emissions of biogenic volatile organic compounds
are prescribed monthly averages according toGuenther et al.
(1995). Present-day anthropogenic aerosol and precursor
emissions are taken from AeroCom emission inventory for
the year 2000 (Dentener et al., 2006). For the future sim-
ulation, we apply one scenario from the “Representative
Concentration Pathways” (RCPs), which are used for the
emission scenario development process of IPCC AR5 (Moss
et al., 2010; Lamarque et al., 2011). The selected pathway is
RCP 3-PD (van Vuuren et al., 2007), which is the most opti-
mistic one regarding emissions of SO2, with an emission re-
duction of 90 % until the year 2100.Makkonen et al.(2012)
have shown that the emissions of RCP 3-PD lead to a strong
decrease in aerosol concentrations and the total aerosol forc-
ing. We will only apply the aerosol and precursor emissions
from the RCP 3-PD pathway: the nitric acid concentrations
are for the year 2000 in all simulations.

2.2 Radiative forcing

We use two separate methods to analyze the effect of nitric
acid on cloud albedo forcing and on total indirect forcing. To
obtain the effect on cloud albedo, we run the ECHAM5.5-
HAM2 model for 5 yr without coupling nitric acid to cloud
microphysics. Instead, at each timestep we first calculate the
CDNC with the Abdul-Razzak and Ghan parameterization
(Abdul-Razzak and Ghan, 2000). Then, we calculate the in-
crease in CDNC due to nitric acid, and perform the radia-
tion calculations twice, with and without nitric acid. The in-
stantaneous change in radiative fluxes at top-of-atmosphere
is diagnosed as cloud albedo forcing. Since the nitric acid is
prescribed as monthly average 3-D-fields, the variation in the
cloud albedo forcing is rather small, and a 5-yr model inte-
gration is sufficient.

For the total indirect effect, two separate simulations are
needed. One control simulation is done without nitric acid
included. A second simulation is carried out, where the ni-
tric acid is allowed to change the actual CDNC used in cloud
microphysics. The perturbation in CDNC can then lead to
changes in e.g. cloud albedo, cloud lifetime and precipitation.
The total indirect effect is analyzed as the difference in the
top-of-atmosphere short-wave fluxes between the two simu-
lations. Although the overall climate is constrained by pre-
scribed sea-surface temperatures, the coupling of nitric acid
and CDNC can alter cloud fields significantly. Hence, the two
simulations are integrated for 20 yr to reduce the effect of the
climate model’s internal variability. The latter method used
to obtain the total indirect forcing is essentially equivalent
to quasi-forcing or fixed-SST-forcing calculated as radiative
flux perturbation (Rotstayn and Penner, 2001).

The analyzed flux perturbations correspond to changes in
present-day cloud forcing when nitric acid is explicitly de-
scribed in cloud activation. Since the used nitric acid fields
also contain natural sources, the resulting change in radia-
tive fluxes is not strictly the anthropogenic forcing. How-
ever, global anthropogenic NOx emissions are almost five-
fold compared to emissions from natural sources (Delmas
et al., 1997), and in areas with clouds most affected by ni-
tric acid, the influence of anthropogenic NOx emissions is
presumably even higher.

2.3 Nitric acid

The nitric acid concentration fields are prescribed monthly
mean volume mixing ratios from the RETRO study
calculated with the chemistry global circulation model
ECHAM5 MOZ (Rast et al., 2012). The nitric acid fields
are representative of the year 2000. The chemistry in the
ECHAM5 MOZ is based on MOZART2 (Horowitz et al.,
2003). Nitrate aerosols are not included in ECHAM5MOZ,
hence the applied nitric acid concentration includes also the
aerosol-phase nitrate. This leads to an overestimation of the
nitric acid concentration, especially during nighttime. All
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Table 1. Acronyms and description of the experiments. In HNO3DIAG 2000 and HNO3DIAG 2100, the effect of HNO3 is diagnosed
during simulation, and HNO3 does not affect modeled climate. In HNO3FULL 2000, the coupling of HNO3, CDNC and modeled climate
is implemented.

Aerosol and HNO3 Simulated
Experiment name precursor emissions concentrations years HNO3 effect

HNO3 DIAG 2000 AeroCom year 2000 Year 2000 5 Diagnostic
HNO3 DIAG 2100 RCP 3-PD year 2100 Year 2000 5 Diagnostic

CTRL 2000 AeroCom year 2000 Year 2000 20 Uncoupled
HNO3 2000 AeroCom year 2000 Year 2000 20 Coupled

nitrate is assumed to be gas-phase nitric acid available for
condensation, although in reality some of the nitric acid
could already reside in the cloud phase due to earlier cloud
cycle and would not enhance further activation. We do not
apply any diurnal variation to the nitric acid concentration.

Although the ECHAM5MOZ can capture the vertical
distribution of nitric acid quantitatively well, there is a
rather systematic overestimation of the concentrations. Over-
all bias, based on 15 different campaigns, is 74 % at 500 hPa
and 124 % at 900 hPa. The overestimation could be related
to too high NOx emissions, too low wet deposition, or the
lack of treatment of nitrate aerosol in ECHAM5MOZ. The
applied nitric acid fields are quantitatively similar to those in
Xu and Penner(2012), with global average surface concen-
trations of 165 pptv and 174 pptv in this study andXu and
Penner(2012), respectively. Surface HNO3 concentrations
over remote oceans are slightly higher in ECHAM5MOZ,
while Xu and Penner(2012) show generally higher concen-
trations over continents.

2.4 Simulation setup

The conducted experiments are shown in Table 1. In experi-
ments HNO3DIAG 2000 and HNO3DIAG 2100 the effect
of nitric acid on CDNC is only diagnosted, and nitric acid
does not affect simulated climate. In HNO32000, the CDNC
perturbations due to nitric acid will affect cloud properties
and simulated climate, whereas in CTRL2000, the effect of
nitric acid is completely turned off.

3 Results and discussion

3.1 Nitric acid effect on activation

Figure1 shows the distribution of activated fractionsFx and
F0 at 8 different heights between 100 and 2000 m, taken
from simulations without coupling of nitric acid and cloud
microphysics (HNO3DIAG 2000). The scatter plot is gen-
erated by correlatingFx with F0 at each model grid point
at a specific height. At low altitudes (100–200 m) the acti-
vated fractionF0 without nitric acid effect can easily reach
values over 0.3, and Fig.1 shows a large spread in the acti-
vated fractionFx with nitric acid at these values. Nitric acid

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Activated fraction without nitric acid (F
0
)

A
c
ti

v
a
te

d
 f

ra
c
ti

o
n

 w
it

h
 n

it
ri

c
 a

c
id

 (
F

x
)

 

 

100

200

300

500

700

1000

1500

2000

Height (m)

Fig. 1. Scatter plot of activated fraction with nitric acid (Fx) plot-
ted against activated fraction without nitric acid (F0) at 8 different
heights. The scatter plots are generated by plotting 5-yr average ac-
tivated fractions in each grid point against each other. The data is
from simulations without coupling of nitric acid and cloud micro-
physics (experiment HNO3DIAG 2000).

can not decrease the activated fraction at any point. The rela-
tive increase in activated fraction due to nitric acid increases
monotonously with height, from about 10–20 % below 1 km
to >50 % above 3.5 km.

The zonal distribution of CDNC increase due to nitric acid
is shown in Fig.2, calculated from experiments HNO32000
and CTRL2000. The strongest effect is seen in the mid-
troposphere between 500–800 hPa and between 30◦ S–60◦ N,
where nitric acid can increase CDNC by more than 10 % in
large areas. Figure2 shows also the ratio of nitric acid mass
versus Aitken and accumulation mode sulfate mass, indicat-
ing potential increase in nitric acid effect with height.

3.2 Present-day forcing due to nitric acid

Our simulations show a strong effect from the inclu-
sion of nitric acid on total short-wave radiation fluxes
at top-of-atmosphere:−0.32± 0.01 W m−2 for the cloud
albedo effect (HNO3DIAG 2000) and−0.46± 0.26 W m−2
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Fig. 3. Zonal average nitric acid mixing ratio at 750 hPa (ppb),
cloud albedo forcing (W m−2) (experiment HNO3DIAG 2000)
and total indirect forcing (W m−2) due to inclusion of nitric acid.
The total indirect forcing is calculated as the difference in top-
of-atmosphere short-wave fluxes between experiments HNO32000
and CTRL2000. Also shown is the ratio of CDNC at the 750 hPa
level between experiments HNO32000 and CTRL2000. The blue
shading corresponds to standard deviation of the total indirect forc-
ing. The standard deviation is presented also for the cloud albedo
forcing, but it is almost indistinguishable from the green line.

(−0.42± 0.28 W m−2 when accounting for longwave radi-
ation) for the total indirect effect (HNO32000), with the
uncertainty range indicating the inter-annual standard de-
viation. The effect is rather large compared to the sim-
ulated anthropogenic indirect forcing without nitric acid,
−1.6 W m−2.

With the NOx sources mostly confined to the Northern
Hemisphere, the cooling from nitric acid has a strong zonal
pattern. Figure3 shows the cloud albedo effect peaking
between 20◦ N–80◦ N, reaching a value of−0.90 W m−2

around 50◦ N. The hemisphere-mean effect of nitric acid

on cloud albedo forcing is−0.17 W m−2 for the Southern
Hemisphere and -0.43 W m−2 for the Northern Hemisphere.
Similarly to the cloud albedo effect, the total indirect effect
shows a strong contrast between Southern (−0.20 W m−2)
and Northern (−0.59 W m−2) Hemisphere. The 5-yr global
averages of the total indirect forcing extracted from the 20-
yr simulation are−0.38,−0.49,−0.38 and−0.58 W m−2,
so they all exceed the cloud albedo forcing of−0.32 W m−2.
Figure 3 shows that the nitric acid induced perturbation
to CDNC follows the nitric acid concentration, indicating
that the fluctuations in total indirect effect are arising from
changes in modeled cloud cover.

As shown in Fig.4, there are differences between the
spatial distributions of HNO3 concentration and the sim-
ulated cloud albedo forcing. In addition to the nitric acid
concentration, the nitric acid effect on cloud droplet con-
centration depends on the aerosol distribution, temperature,
updraft velocity and activated fraction. The annual average
HNO3 mixing ratio at the 750 hPa level (Figure 4a) reaches
>1 ppb in polluted regions (middle Africa, India, China) and
is mostly between 0.1–1 ppb over continents. Although sur-
face concentrations are even higher close to NOx sources (an-
nual average several ppb), the 750 hPa level shows clearly
the transport of HNO3 over oceans. The transport of HNO3
has been observed from satellites, and HNO3 has been sug-
gested as a reservoir of NOx (Wespes et al., 2007). In large
parts of the North Atlantic, HNO3 levels are between 0.3–
0.5 ppb. The outflow from Africa establishes even 0.5–1 ppb
of HNO3 over the South Atlantic. The overall effect of HNO3
on cloud droplet number concentration is largest over con-
tinents, especially over polluted regions. The cloud albedo
effect ranges from−1.5 to−2 W m−2 over Eastern US, Eu-
rope, central Africa and Japan. The forcing is stronger than
−0.2 W m−2 over all continental regions except for north-
ern Africa, Middle East and Greenland. At certain locations,
even a high HNO3 concentration is not enough to produce a
strong cooling: e.g. in India, the annual average HNO3 con-
centration of 1 ppb or more leads to a forcing from only−0.2
to −0.7 W m−2. The cooling over India is most prominent
during summer months, when the simulated aerosol concen-
trations are lower than average. With high enough aerosol
number concentrations, the amount of nitric acid partitioned
in each particle, and subsequent effect on activation, is small
(Nenes et al., 2002).

The cloud albedo forcing found here,−0.32 W m−2,
is slightly higher than the present-day indirect effect of
−0.23 W m−2 of total nitrate and ammonium found inXu
and Penner(2012). Although the results inXu and Penner
(2012) include the contribution of particulate nitrate, the in-
direct effect is mainly due to gaseous nitric acid. The spa-
tial patterns of the cloud albedo forcing are very similar.Xu
and Penner(2012) show stronger forcing in Australia, conti-
nental South-East Asia, southern US and continental outflow
regions, whereas the forcing found in this study is stronger
in Europe, around Japan, and middle Africa. The gas-phase
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Fig. 4. (a) Annual average nitric acid mixing ratio at 750 hPa (ppb),(b) surface-level CCN(0.2 %) (cm−3) from experiment
HNO3 DIAG 2000 (unperturbed by nitric acid),(c) cloud albedo forcing (W m−2) (experiment HNO3DIAG 2000) and(d) total indi-
rect forcing (W m−2) due to inclusion of nitric acid, calculated from experiments HNO32000 and CTRL2000. The cloud albedo forcing is
averaged over 5 yr, the total indirect forcing over 20 yr. White dots in(d) indicate statistical significance withp < 0.05.

nitric acid fields used inXu and Penner(2012) are very simi-
lar to those applied here, averaging in the surface layer of the
model to 165 pptv and 174 pptv in this study andXu and Pen-
ner (2012), respectively. The nitric acid concentrations over
oceans in our study are slightly higher than those inXu and
Penner(2012).

The nitric acid inclusion leads to a global annual-mean in-
crease of 7 % in CDNC, which is a clear signal of the nitric
acid effect and sufficient for a significant cloud albedo per-
turbation. The CDNC increase is in good agreement withXu
and Penner(2012), where CDNC increased by 2.4 % due to
particulate nitrate and 11.5 % due to total nitrate (including
nitric acid effect). The zonal averages in Fig.3 show that this
CDNC increase follows the nitric acid concentration. How-
ever, the zonal averages of the total indirect forcing (Fig.3)
and especially its horizontal distribution (Fig.4d) differ sub-
stantially from the cloud albedo effect. Indeed, Fig.4d shows
that locally, the total indirect effect can be either stronger
or weaker negative than the cloud albedo effect, and even
positive at many locations. The areas with positive (strong
negative) total indirect forcing generally correspond to re-
duced (increased) cloudiness. For the most part, the changes
in the horizontal distribution of cloudiness (not shown) are

statistically insignificant, that is, they are undistinguishable
from the internal variability of the model’s climate. Thus the
small-scale patterns seen in Fig.4d are not robust. However,
the nitric acid induced changes in global-mean low cloud
fraction and middle cloud fraction (0.38 % and 0.40 %, re-
spectively) are both significant at higher than 99.9 % level
of confidence. This is consistent with the global-mean total
indirect effect being larger than the cloud albedo effect, and
provides evidence that at least in this model, nitric acid acts
to increase the average cloud lifetime.

3.3 Effect of decreasing future aerosol concentration

To study the impact of decreasing aerosol concentration
on the effect of nitric acid, we show results from simula-
tions with aerosol and precursor emissions of the year 2100,
but with present-day nitric acid concentrations. Low emis-
sions of the RCP 3-PD pathway lead to a strong decrease
in CCN(0.2 %) concentration (Fig.5a and b), except for
high-latitude regions. In continental Northern hemisphere,
the decrease in CCN(0.2 %) concentration is generally over
50 %, while in South America, Africa and Australia the de-
crease is slightly smaller. More details on changing number
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(c) Cloud albedo forcing in year 2100
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(d) Change in cloud albedo forcing (2100−2000)
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Fig. 5. (a) Surface-level CCN(0.2 %) (cm−3) in year 2100 (HNO3DIAG 2100),(b) ratio of CCN(0.2 %) between years 2100 and 2000
(experiments HNO3DIAG 2100 and HNO3DIAG 2000),(c) cloud albedo forcing (W m−2) due to nitric acid in year 2100 (experiment
HNO3 DIAG 2100), and(d) the change in cloud albedo forcing due to nitric acid (W m−2) between years 2000 and 2100 (negative values
indicate more cooling due to nitric acid in year 2100). The change in(d) is calculated as a difference of nitric acid cloud albedo forcing in
experiments HNO3DIAG 2100 and HNO3DIAG 2000.

concentration under RCP 3-PD can be found inMakkonen
et al. (2012). Note that the shown CCN concentrations are
unperturbed by nitric acid.

The change in nitric acid cloud albedo forcing between
years 2000 and 2100 shown in Fig.5 is clearly connected
to the change in CCN(0.2 %) concentration. The cloud
albedo forcing due to nitric acid is intensified by more than
0.25 W m−2 in North America, Central Africa, India, China
and Eastern Europe, when moving from year 2000 to 2100.
These areas show a simultaneous decrease in CCN(0.2 %)
by more than 200 (cm−3) (a decrease of 50–80 %). Even
though the simulated present-day cloud albedo forcing can
reach high values even in rather polluted areas, the results in-
dicate that cleaning the air from particulate pollutants intensi-
fies the nitric acid effect. The resulting negative forcing could
balance the loss in aerosol forcing. The present-day global
average cloud albedo effect of−0.32 W m−2 is increased to
−0.37 W m−2 in the year 2100.

It should be noted that our future simulation only fo-
cused on the effect of decreasing number concentrations on
the magnitude of the nitric acid effect. Also, the number
concentrations are simulated with a model without nitrate
aerosols, hence the anthropogenic emission changes stem
only from SO2, BC and OC. The applied nitric acid concen-

tration is identical for years 2000 and 2100, while the RCP
3-PD shows a 60 % decrease in anthropogenic NOx emis-
sions (Lamarque et al., 2011). RCP 3-PD also predicts a 70 %
increase in ammonia emissions, however the global ammo-
nium aerosol burden is decreasing due to a decrease in NOx
(Lamarque et al., 2011). To fully quantify the effect of ni-
tric acid condensation in the future aerosol forcing requires
simulations with coupled aerosol-chemistry models includ-
ing nitrate aerosols.

4 Conclusions

We have presented global model simulations with explicit
inclusion of the effect of nitric acid condensation on cloud
droplet activation. The increased soluble material increases
cloud droplet number concentrations significantly, leading
to a −0.32± 0.01 W m−2 cloud albedo forcing and a to-
tal indirect forcing of−0.46± 0.26 W m−2 with present-day
emissions. While the cloud albedo effect is spatially cou-
pled to nitric acid concentrations, the total indirect forcing
is dominated by changes in low and middle cloud cover.
The spatial distribution of cloud cover changes can be very
much model dependent, nonetheless the total indirect effect
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qualifies for an estimate for cloud effects beyond the cloud
albedo effect.

We also showed that with decreasing aerosol number con-
centrations in the future, the effect of nitric acid could play
a more important role. The applied future pathway with over
50 % reductions in CCN concentrations led to a nitric acid
cloud albedo forcing of−0.37± 0.01 W m−2 in year 2100.
While the simulation did not take into account changes in
NOx, nitrate aerosol or ammonia, it serves as indication on
the effect of particle number reductions. Despite the bene-
fits from added cooling, other environmental impacts (acid
rain, ozone production) and health issues speak for reduction
measures of NOx emissions. To account for the total effect of
NOx on aerosols and clouds, one should also consider NOx
as a source of ozone.
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