216 research outputs found

    Short-lived isomers in Po-192 and Po-194

    Get PDF
    Isomeric states in Po194 and Po192 were studied at the velocity filter SHIP. The isotopes were produced in the fusion-evaporation reactions Pr141(Fe56, p2n)Po194 and Sm144(V51, p2n)Po192. Several new γ-ray transitions were attributed to the isomers and γ−γ coincidences for both isomers were studied for the first time. The 459-keV transition earlier, tentatively proposed as de-exciting the isomeric level in Po194, was replaced by a new 248-keV transition, and the spin of this isomer was reassigned from (11−) to (10−). The de-excitation of the (11−) isomeric level in Po192 by the 154-keV transition was confirmed and a parallel de-excitation by a 733-keV (E3) transition to (8+) level of the ground-state band was suggested. Moreover, side feeding to the (4+) level of the ground-state band was proposed. The paper also discusses strengths of transitions de-exciting 11− isomers in neighboring Po and Pb isotopes

    Meditation-induced near-death experiences: a 3-year longitudinal study

    Get PDF
    Near-death experiences (NDEs) are life transformational events that are increasingly being subjected to empirical research. However, to date, no study has investigated the phenomenon of a meditation-induced near-death experience (MI-NDE) that is referred to in ancient Buddhist texts. Given that some advanced Buddhist meditators can induce NDEs at a pre-planned point in time, the MI-NDE may make NDEs more empirically accessible and thus advance understanding into the psychology of death-related processes. The present study recruited 12 advanced Buddhist meditators and compared the MI-NDE against two other meditation practices (i.e. that acted as control conditions) in the same participant group. Changes in the content and profundity of the MI-NDE were assessed longitudinally over a 3-year period. Findings demonstrated that compared to the control conditions, the MI-NDE prompted significantly greater pre-post increases in NDE profundity, mystical experiences and non-attachment. Furthermore, participants demonstrated significant increases in NDE profundity across the 3-year study period. Findings from an embedded qualitative analysis (using grounded theory) demonstrated that participants (i) were consciously aware of experiencing NDEs, (ii) retained volitional control over the content and duration of NDEs and (iii) elicited a rich array of non-worldly encounters and spiritual experiences. In addition to providing corroborating evidence in terms of the content of a “regular” (i.e. non-meditation-induced) NDE, novel NDE features identified in the present study indicate that there exist unexplored and/or poorly understood dimensions to NDEs. Furthermore, the study indicates that it would be feasible - including ethically feasible - for future research to recruit advanced meditators in order to assess real-time changes in neurological activity during NDEs

    Alpha decay of 176Au

    Get PDF
    International audienceThe isotope Au176 has been studied in the complete fusion reaction Ca40+Pr141 → 176Au+5n at the velocity filter SHIP (GSI, Darmstadt). The complex fine-structure α decay of two isomeric states in Au176 feeding several previously unknown excited states in the daughter nucleus Ir172 is presented. An α-decay branching ratio of bα=9.5(11)% was deduced for the high-spin isomer in Ir172

    Emergence of qualia from brain activity or from an interaction of proto-consciousness with the brain: which one is the weirder? Available evidence and a research agenda

    Get PDF
    This contribution to the science of consciousness aims at comparing how two different theories can explain the emergence of different qualia experiences, meta-awareness, meta-cognition, the placebo effect, out-of-body experiences, cognitive therapy and meditation-induced brain changes, etc. The first theory postulates that qualia experiences derive from specific neural patterns, the second one, that qualia experiences derive from the interaction of a proto-consciousness with the brain\u2019s neural activity. From this comparison it will be possible to judge which one seems to better explain the different qualia experiences and to offer a more promising research agenda

    O-Glycosylation of snails

    Get PDF
    The glycosylation abilities of snails deserve attention, because snail species serve as intermediate hosts in the developmental cycles of some human and cattle parasites. In analogy to many other host-pathogen relations, the glycosylation of snail proteins may likewise contribute to these host-parasite interactions. Here we present an overview on the O-glycan structures of 8 different snails (land and water snails, with or without shell): Arion lusitanicus, Achatina fulica, Biomphalaria glabrata, Cepaea hortensis, Clea helena, Helix pomatia, Limax maximus and Planorbarius corneus. The O-glycans were released from the purified snail proteins by β-elimination. Further analysis was carried out by liquid chromatography coupled to electrospray ionization mass spectrometry and – for the main structures – by gas chromatography/mass spectrometry. Snail O-glycans are built from the four monosaccharide constituents: N-acetylgalactosamine, galactose, mannose and fucose. An additional modification is a methylation of the hexoses. The common trisaccharide core structure was determined in Arion lusitanicus to be N-acetylgalactosamine linked to the protein elongated by two 4-O-methylated galactose residues. Further elongations by methylated and unmethylated galactose and mannose residues and/or fucose are present. The typical snail O-glycan structures are different to those so far described. Similar to snail N-glycan structures they display methylated hexose residues

    EuroDia: a beta-cell gene expression resource

    Get PDF
    Type 2 diabetes mellitus (T2DM) is a major disease affecting nearly 280 million people worldwide. Whilst the pathophysiological mechanisms leading to disease are poorly understood, dysfunction of the insulin-producing pancreatic beta-cells is key event for disease development. Monitoring the gene expression profiles of pancreatic beta-cells under several genetic or chemical perturbations has shed light on genes and pathways involved in T2DM. The EuroDia database has been established to build a unique collection of gene expression measurements performed on beta-cells of three organisms, namely human, mouse and rat. The Gene Expression Data Analysis Interface (GEDAI) has been developed to support this database. The quality of each dataset is assessed by a series of quality control procedures to detect putative hybridization outliers. The system integrates a web interface to several standard analysis functions from R/Bioconductor to identify differentially expressed genes and pathways. It also allows the combination of multiple experiments performed on different array platforms of the same technology. The design of this system enables each user to rapidly design a custom analysis pipeline and thus produce their own list of genes and pathways. Raw and normalized data can be downloaded for each experiment. The flexible engine of this database (GEDAI) is currently used to handle gene expression data from several laboratory-run projects dealing with different organisms and platforms
    corecore