Decay of ^{200,201}Fr*

Z. Kalaninová^{†1}, S. Antalic¹, A.N. Andreyev^{2,3}, F.P. Heβberger^{4,5}, D. Ackermann⁴, B. Andel¹, L. Bianco⁶, S. Hofmann⁴, M. Huyse⁷, B. Kindler⁴, B. Lommel⁴, R. Mann⁴, R.D. Page⁶, P. Sapple⁶, J. Thomson⁶, P. Van Duppen⁷, and M. Venhart^{8,1}

¹Comenius University, Bratislava, Slovakia; ²University of York, York, UK; ³ASRC, JAEA, Ibaraki, Japan; ⁴GSI, Darmstadt, Germany; ⁵Helmholtz Institut Mainz, Mainz, Germany; ⁶University of Liverpool, Liverpool, UK; ⁷KU Leuven, Leuven, Belgium; ⁸Institute of Physics, SAS, Bratislava, Slovakia

In the region of neutron-deficient nuclei above lead several interesting nuclear-structure phenomena can be observed, e.g., coexistence of states with different shapes within one nucleus, or β -delayed fission. This motivated us to investigate the neutron-deficient isotopes 200,201 Fr.

The studied nuclei were produced at the velocity filter SHIP (GSI, Darmstadt) in fusion-evaporation reactions ${}^{56}\text{Fe} + {}^{147,149}\text{Sm}$ at several beam energies from 236 to 275 MeV. Evaporation residues (ERs) were separated from other particles and transported into a focal-plane detector system. ERs were implanted into a 16-strip position-sensitive silicon detector (PSSD) recording also their α decays. Escaping α particles were recorded by a system of six silicon detectors placed upstream the beam covering 80 % of 2π . A germanium clover detector placed closely behind the PSSD registered γ and X-rays.

We measured $E_{\alpha} = 7470(5) \text{ keV}$ and $T_{1/2} = 46(4) \text{ ms}$ for ²⁰⁰Fr confirming known α -decay data for this isotope. For its daughter isotope, ¹⁹⁶At, we observed a new weak α line at 6732(8) keV with a relative intensity of 4(2) % besides the main 7045(5)-keV α line. The determined energy of the level in ¹⁹²Bi populated by the 6732(8)-keV decay is 320(10) keV. Within a 5- μ s coincidence time with implanted ERs followed by α decays of ²⁰⁰Fr we observed weak γ lines at 75.5 and 77.1 keV and K $_{\alpha}$ (Fr) X-rays. They indicate a short-lived γ -decaying state in ²⁰⁰Fr with $T_{1/2} = 0.6^{+0.5}_{-0.2} \mu$ s. One β -delayed fission (β DF) event attributed to ²⁰⁰Fr was observed. Deduced probability of β DF for the daughter isotope ²⁰⁰Rn is more than 1.4 %.

We identified a short-lived γ -decaying activity with $T_{1/2} = 0.7^{+0.5}_{-0.2} \,\mu s$ also in 201 Fr based on the registration of γ and K_{α} X-rays. From the analysis of K-shell internal conversion coefficients ($\alpha_{\rm K}$) [1] and estimated single-particle half-lives ($T_{1/2,SP}$) according to Weisskopf [2] we suppose that observed γ and X-rays arise from an internal transition of M2 multipolarity. We tentatively assigned the spin and parity of 13/2⁺ to the observed isomeric state in 201 Fr. The lower energy limit for this level was determined to be higher than the K-shell atomic-electron binding energy of francium (101.13 keV) because of the detection of K X-rays. The upper energy limit was roughly estimated to be 300 keV from the comparison of experimental and expected $\alpha_{\rm K}$ and $T_{1/2,SP}$ for M2 transitions.

For most of the neutron-deficient francium (Z = 87)

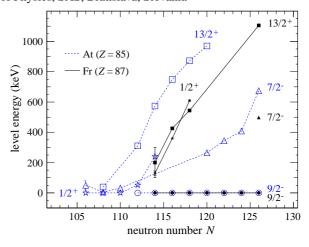


Figure 1: (Color online) Energy level systematics for odd-A astatine (dashed lines and open symbols) and francium (solid lines and full symbols) isotopes.

and astatine (Z = 85) isotopes a $9/2^{-}$ state related to a spherical shape was identified to be a ground state. In astatine isotopes, the $7/2^-$, $1/2^+$, and $13/2^+$ levels, related to oblate shapes, were observed with energies decreasing at decreasing N (see Fig 1). Starting with ¹⁹⁵At (N = 110), the $1/2^+$ level becomes the ground state in astatine isotopes [3]. The energy interval of the tentative $13/2^+$ level in 201 Fr estimated from our data follows the trend of decreasing energies at decreasing N of this level in francium isotopes. A similar trend was also observed for the $1/2^+$ level. In the lightest francium isotopes we can expect a change of spin of the ground state, but it was not definitely identified so far. All of the $13/2^+$, $7/2^-$, $1/2^+$ levels were reported to be detected in ¹⁹⁹Fr within 300 keV [4]. However, in recent measurements at SHIP we only observed the $7/2^{-1}$ level, and tentatively also the $1/2^+$ level [5]. Higher statistics are needed to disentangle the level structure in this isotope.

References

- [1] T. Kibédi, et al., Nucl. Instr. and Meth. A 589, 202 (2008).
- [2] V.F. Weisskopf, Phys. Rev. 83, 1073 (1951).
- [3] H. Kettunen, et al., Eur. Phys. J. A 16, 457 (2003).
- [4] J. Uusitalo, et al., Phys. Rev. C 87, 064304 (2013).
- [5] Z. Kalaninová, et al., Phys. Rev. C 87, 044335 (2013).

^{*}Work supported by Slovak Research and Development Agency and Slovak grant agency VEGA.

[†]Zdenka.Kalaninova@fmph.uniba.sk