11 research outputs found

    The dual endothelin converting enzyme/neutral endopeptidase inhibitor SLV-306 (daglutril), inhibits systemic conversion of big endothelin-1 in humans

    Get PDF
    Aims - Inhibition of neutral endopeptidases (NEP) results in a beneficial increase in plasma concentrations of natriuretic peptides such as ANP. However NEP inhibitors were ineffective anti-hypertensives, probably because NEP also degrades vasoconstrictor peptides, including endothelin-1 (ET-1). Dual NEP and endothelin converting enzyme (ECE) inhibition may be more useful. The aim of the study was to determine whether SLV-306 (daglutril), a combined ECE/NEP inhibitor, reduced the systemic conversion of big ET-1 to the mature peptide. Secondly, to determine whether plasma ANP levels were increased. Main methods - Following oral administration of three increasing doses of SLV-306 (to reach an average target concentration of 75, 300, 1200 ng ml− 1 of the active metabolite KC-12615), in a randomised, double blinded regime, big ET-1 was infused into thirteen healthy male volunteers. Big ET-1 was administered at a rate of 8 and 12 pmol kg− 1 min− 1 (20 min each). Plasma samples were collected pre, during and post big ET-1 infusion. ET-1, C-terminal fragment (CTF), big ET-1, and atrial natriuretic peptide (ANP) were measured. Key findings - At the two highest concentrations tested, SLV-306 dose dependently attenuated the rise in blood pressure after big ET-1 infusion. There was a significant increase in circulating big ET-1 levels, compared with placebo, indicating that SLV-306 was inhibiting an increasing proportion of endogenous ECE activity. Plasma ANP concentrations also significantly increased, consistent with systemic NEP inhibition. Significance - SLV-306 leads to inhibition of both NEP and ECE in humans. Simultaneous augmentation of ANP and inhibition of ET-1 production is of potential therapeutic benefit in cardiovascular disease

    Comparison of endothelin receptors in normal versus cirrhotic human liver and in the liver from endothelial cell-specific ETB knockout mice

    Get PDF
    AbstractAimsEndothelin (ET) antagonists show promise in animal models of cirrhosis and portal hypertension. The aim was to pharmacologically characterise the expression of endothelin receptors in human liver, hepatic artery and portal vein.Main methodsImmunofluorescence staining, receptor autoradiography and competition binding assays were used to localise and quantify ET receptors on hepatic parenchyma, hepatic artery and portal vein in human cirrhotic or normal liver. Additional experiments were performed to determine the affinity and selectivity of ET antagonists for liver ET endothelin receptors. An endothelial cell ETB knockout murine model was used to examine the function of sinusoid endothelial ETB receptors.Key findingsETB receptors predominated in normal human liver and displayed the highest ratio (ETB:ETA 63:47) compared with other peripheral tissues. In two patients examined, liver ETB expression was up-regulated in cirrhosis (ETB:ETA 83:17). Both sub-types localised to the media of normal portal vein but ETB receptors were downregulated fivefold in the media of cirrhotic portal vein. Sinusoid diameter was fourfold smaller in endothelial cell ETB knockout mice. The liver morphology of ETB knockout mice was markedly different to normal murine liver, with loss of the wide spread sinusoidal pattern. In the knockout mice, sinusoids were reduced in both number and absolute diameter, while large intrahepatic veins were congested with red blood cells.SignificanceThese data support a role for the ET system in cirrhosis of the liver and suggest that endothelial ETB blockade may cause sinusoidal constriction which may contribute to hepatotoxicity associated with some endothelin antagonists

    The potential of positron-emission tomography to study anticancer-drug resistance

    No full text
    corecore