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Aims: Endothelin (ET) antagonists show promise in animal models of cirrhosis and portal hypertension. The
aim was to pharmacologically characterise the expression of endothelin receptors in human liver, hepatic ar-
tery and portal vein.
Main methods: Immunofluorescence staining, receptor autoradiography and competition binding assays were
used to localise and quantify ET receptors on hepatic parenchyma, hepatic artery and portal vein in human
cirrhotic or normal liver. Additional experiments were performed to determine the affinity and selectivity
of ET antagonists for liver ET endothelin receptors. An endothelial cell ETB knockout murine model was
used to examine the function of sinusoid endothelial ETB receptors.
Key findings: ETB receptors predominated in normal human liver and displayed the highest ratio (ETB:ETA
63:47) compared with other peripheral tissues. In two patients examined, liver ETB expression was up-
regulated in cirrhosis (ETB:ETA 83:17). Both sub-types localised to the media of normal portal vein but ETB
receptors were downregulated fivefold in the media of cirrhotic portal vein. Sinusoid diameter was fourfold

smaller in endothelial cell ETB knockout mice. The liver morphology of ETB knockout mice was markedly dif-
ferent to normal murine liver, with loss of the wide spread sinusoidal pattern. In the knockout mice, sinusoids
were reduced in both number and absolute diameter, while large intrahepatic veins were congested with red
blood cells.
Significance: These data support a role for the ET system in cirrhosis of the liver and suggest that endothelial
ETB blockade may cause sinusoidal constriction which may contribute to hepatotoxicity associated with some
endothelin antagonists.
© 2012 Elsevier Inc. All rights reserved.
Introduction

Current medical treatment of portal hypertension (PH) is inade-
quate and patient mortality remains high resulting from complica-
tions of chronic liver disease, including variceal haemorrhage. The
aim of therapy and prophylaxis is to lower portal pressure to levels
that reduce the risk of variceal haemorrhage and death. Meta-
analysis has demonstrated that a portal pressure of less than
12 mmHg or a greater than 20% reduction from baseline portal pres-
sure reduces variceal bleeding and mortality (D'Amico et al., 2006).
Current pharmacological interventions, including beta-blockade, aim
nit, University of Cambridge,
brooke's Hospital, Cambridge,
1223 336899 (International);
al).
enport).
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to reduce splanchnic flow and portal pressure, but 30–40% of patients
either do not respond or target reduction in portal pressure is not
achieved (Garcia-Tsao et al., 1986; Merkel et al., 2000). Liver trans-
plantation is an effective treatment for both cirrhosis and PH, but
the demand for donor organs continues to outstrip supply. With an
increasing prevalence of chronic liver disease and limited treatment
options, there is clinical urgency for new medical therapy.

A role for the endothelin (ET) system in liver cirrhosis has been
suggested by clinical studies that demonstrated a correlation be-
tween the severity of cirrhosis and elevated plasma endothelin-1
(ET-1) levels (Tsai et al., 1995; Uchihara et al., 1992). ET-1 mediates
its actions via two receptors, ETA and ETB (Davenport, 2002;
Davenport and Maguire, 2006) and in healthy rat liver, both sub-
types are concentrated along sinusoids, mainly on hepatic stellate
cells and sinusoidal endothelial cells (Gondo et al., 1993; Housset et
al., 1993). In rats with cirrhosis, expression of both receptors on he-
patic stellate cells was reported to be up-regulated, but receptor
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expression on sinusoidal endothelial cells was unchanged (Yokomori
et al., 2001a). Using immunohistochemistry, ETB expression was also
reported to be up-regulated in human cirrhotic liver, with low ETA ex-
pression detected in both normal and diseased liver (Yokomori et al.,
2001b). Endothelin may also be an important regulator of sinusoid
vascular resistance mediated by vasoconstriction of stellate cells, the
main effector of sinusoid calibre (Rockey and Weisiger, 1996). In an-
imal studies infusion of ET-1 caused a dose-dependent decrease in si-
nusoid diameter (Okumura et al., 1994; Zhang et al., 1994) and both
selective ETA and mixed antagonists were shown to decrease portal
pressure (Feng et al., 2009; Sogni et al., 1998). Additionally, ET antag-
onists may also decrease the fibrotic response in cirrhosis (Khimji and
Rockey, 2011).

Our aim was to determine the distribution and density of ET recep-
tors in human normal and cirrhotic liver parenchyma, hepatic artery
and portal vein. Immunofluorescence staining and autoradiography
were used to localise and quantify ET receptors on normal and diseased
hepatic artery and portal vein. Receptor autoradiography and competi-
tion binding assayswere used to quantify ET receptors and to determine
the binding characteristics of ET antagonists in human liver. Lastly, an
endothelial cell specific ETB knockout murine model was used to inves-
tigate the consequence of loss of ETB receptors to provide evidence that
selective ETA antagonism may be the treatment of choice in cirrhosis
and PH.

Materials and methods

BQ123, cyclo[D-Asp-L-Pro-D-Val-L-Leu-D-Trp-], BQ788, (N-cis-2,6-
dimethylpiperidinocarbonyl-γL-MeLeu-D-Trp(CooMe)-D-Nle-ONa)
and BQ3020, [Ala11, 15]Ac-ET-16-21 were synthesised by solid phase
t-Boc chemistry. [

125
I]-ET-1 was from PerkinElmer, while unlabelled

ET-1 was from Peptide Institute. Ambrisentan and sitaxentan were
from Gilead Sciences, Inc. and Pfizer, Inc., respectively. ETA and ETB
rabbit antisera were raised to the C-terminus of ETA(413–427) and
to ETB(302–313) (Davenport and Kuc, 2005a). Primary goat anti-
von Willebrand factor and anti-smooth muscle α-actin were from
Dako; secondary fluorescent antibodies were from Invitrogen.

Human tissue samples

Tissue samples collected at the time of operation were obtained
with ethical approval (REC 10/H0305) and informed consent. Dis-
eased liver parenchyma, hepatic artery and portal vein were obtained
from patients undergoing liver transplantation for non-infectious
causes of end-stage liver disease. Normal liver parenchyma, hepatic
artery and portal vein samples were from donor liver and vessels
that were not used for transplantation surgery or were normal tissue
from liver resections. Unless otherwise stated n-values refer to the
number of patients from whom tissue was obtained.

Endothelial cell specific ETB knockout mice

Mice were generated using the Cre-loxP system (Bagnall et al.,
2006). After euthanasia, consecutive, cryostat-cut frozen sections
(10 μm) of knock-out and control mouse torsos were mounted onto
gelatine coated glass microscope slides. Sinusoid diameter in ETB
knockout and control mice were measured under light microscopy.
A two-sided unpaired t-test was used to compare changes in sinusoid
number and between control and knock-out mice, with significance
set at Pb0.05.

Dual-labelled immunofluorescence microscopy

Methods were as previously described (Davenport and Kuc,
2005a). Briefly, tissue sections (10 μm) were dried overnight at
room temperature and fixed in ice-cold acetone for 10 minutes. Slides
were incubated with 5% non-immunised donkey serum (DS) in
phosphate-buffered saline (PBS) for 1 hour at room temperature to
block non-specific protein interactions and then incubated overnight
at 4 °C with primary rabbit anti-ETA (1:50) or anti-ETB (1:50) antise-
rum and either primary goat anti-von Willebrand factor (1:50) or
goat anti-smooth muscle α-actin (1:100) antibody diluted in 1%
PBS/0.1% Tween-20/3% DS. Slides were then washed (3×5 minutes)
in cold 1% PBS/0.1% Tween-20 before incubation for 1 hour at room
temperature with Alexa Fluor 488 conjugated donkey anti-rabbit
(1:200), Alexa Fluor 568 conjugated donkey anti-goat (1:100) sec-
ondary antibodies and Hoechst (1:100) diluted in 1% PBS/0.1%
Tween-20/3% DS. Tissue sections were washed again (3×5 minutes)
in cold 1% PBS/0.1% Tween-20 and mounted with ProLong Gold
(Invitrogen). Confocal imaging was performed using a Leica TCS-NT-UV
confocal laser-scanning microscope (Leica Microsystems, Heidelberg,
Germany).

Quantitative autoradiography

Adjacent 10 μm tissue sections were incubated with HEPES buffer
(50 mM HEPES, 5 mMMgCl2, 0.3% bovine serum albumin, pH 7.4) for
20 minutes at room temperature. Sections were incubated for 2 hours
at room temperature with [

125
I]-ET-1 (0.1 nM) alone for total binding

and either with unlabelled ET-1 (1 μM) to determine non-specific
binding, with BQ3020 (100 nM) to label ETA receptors or with
BQ123 (100 nM) to label ETB receptors (Molenaar et al., 1993). Sec-
tions were washed (3×5 minutes) in ice-cold Tris–HCl buffer
(50 mM, pH 7.4), air dried and apposed, together with [

125
I]-ET-1

standards, to Kodak MR-1 autoradiography film for 2 days at room
temperature. The resulting autoradiographs were analysed using
computer-assisted densitometry (Quantimet 970, Leica, Milton Keynes,
UK) (Davenport and Kuc, 2005b) and receptor densities expressed in
amol/mm2.

Competition binding assays

Adjacent 10 μm tissue sections were incubated with HEPES buffer
(50 mM HEPES, 5 mMMgCl2, 0.3% bovine serum albumin, pH 7.4) for
20 minutes at room temperature and then for 2 hours at room tem-
perature with [

125
I]-ET-1 (0.1 nM) and either sitaxentan (20 pM to

200 nM), BQ788 (20 pM to 200 nM) or ambrisentan (20 pM to
200 nM). Non-specific binding was determined by inclusion of 1 μM
ET-1. Sections were washed (3×5 minutes) in ice-cold Tris–HCl buff-
er (50 mM, pH 7.4) and the amount of tissue bound [

125
I]-ET-1 mea-

sured by gamma counting. Data were analysed using EBDA software
(McPherson, 1983) to provide initial estimates of equilibrium dissoci-
ation constant (KD) and maximum binding density (Bmax) and
LIGAND software (Munson and Rodbard, 1980) to determine final es-
timates based on the F-ratio test (Pb0.05) of 1, 2 or 3 site models. The
Bmax was normalised to protein concentration (Davenport and Kuc,
2005b). Results were expressed as the mean±standard error of the
mean.

Results

Dual-labelled immunofluorescence microscopy

Confocal photomicrographs of a transverse section through a human
portal vein from a patient with cirrhosis are shown in Fig. 1A and B.
Antisera to ETA (Fig. 1A)was visualised as green fluorescence and a sec-
ond antisera to the smooth muscle marker α-actin was visualised in
red. Co-localization of both antisera within the medial and intimal
smooth muscle layers of portal vein is shown in yellow. In Fig. 1B, anti-
sera to ETB was visualised as green fluorescence and α-actin in red,
showing that both sub-types were detectable on smooth muscle. ETA
and ETB immunoreactivity was also localised to the adventitial layer of



Fig. 1. (A) Digitally overlaid confocal photomicrographs illustrating the co-localization (shown in yellow) of antisera to ETA or ETB (B) (shown in green) and the smooth muscle
marker α-actin (shown in red) in a transverse section of human portal vein from a patient with cirrhosis. In the corresponding autoradiographs for the distribution of ETA (C)
and ETB (D), binding of the radioligand is shown in black. (E) Adjacent section stained with haematoxylin and eosin comparative histology shows the endothelium (red arrow),
media and adventitia. Scale bars represent 500 μm.

Fig. 2. Dual labelled immunofluorescence confocal imaging of ETA and ETB in cirrhosis
human portal vein (A and B). ET receptors (green) are co-localised (yellow) with von
Willebrand factor (vWF, red). Specific ET receptor staining is seen on the endothelium
(white arrow).
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both vessels. Results at the cellular level were supported by radioligand
binding using [

125
I]-ET-1 where the distribution of ETA (C) and ETB (D)

receptors is shown by the blackening of autoradiography film. Adjacent
sections stained with haematoxylin and eosin were used to delineate
the endothelium (red arrow), media and adventitia.

Confocal photomicrographs (Fig. 2) illustrating the localization of
antisera to ETA (A, shown in green) the endothelial cell marker vWF
(B), shown in red to visualise the single layer of cells in the vascular en-
dothelium in a transverse section of human portal vein from a patient
with cirrhosis. Digitally overlaid confocal photomicrographs (C) illus-
trating the co-localization are shown in yellow. Corresponding images
of ETB immunoreactivity are shown in (Fig. 2D), vWF (Fig. 2E) and the
digital overlay demonstrating co-localization in Fig. 2F.

Autoradiography

In normal liver parenchyma, there was a homogenous distribution
of ET receptors within the tissue, measured by radioligand binding
and quantitative autoradiography. Total ET receptor density mea-
sured using [

125
I]-ET-1 which binds with the same affinity to both

sub-types was 152±11 amol/mm2 with ETA receptors comprising
41±6 amol/mm2 (37±5%) and ETB receptors 81±23 amol/mm2,
(63±5%) (Fig. 3A and B). In preliminary studies using tissue from
two patients with cirrhosis the total receptor density was reduced
to about 100 amol/mm2 and the ratio of ETA:ETB was 17:83. Therefore,

image of Fig.�2


Fig. 3. (A) Density of [
125
I]-ET-1 binding to ETA and ETB in human liver parenchyma and (B) expressed as a ratio of each sub-type. There was a shift in the ratio ETA:ETB from 37:63 in

normal liver to 17:83 in cirrhotic livers. (C) [
125
I]-ET-1 binding to ETA and ETB receptors in the medial layer of portal vein and (D) expressed as a ratio. There was also a change in

diseased media from 57.4% ETA and 42.6% ETB to 90.3% ETA and 9.7% ETB. Each value represents mean and standard error of the mean.
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in liver parenchyma, cirrhosis was associated with a downregulation of
ETA (19 amol/mm−2) and small increase in ETB (96 amol/mm−2) re-
ceptor density (Fig. 3A and B). Cirrhotic liver parenchyma had a charac-
teristic nodular pattern with ETA localised mainly in the fibrous septa
and at lower levels within lobules. Similarly, ETB was also concentrated
along the fibrous connective tissue between lobules in the diseased
liver, but ETB binding was also high within the lobules (Fig. 4).

Autoradiographs revealed the expression of ETA and ETB receptors
determined using binding of [

125
I]-ET-1 in portal vein (Fig. 1C and D)

and hepatic artery were consistent with that obtained by immunohis-
tochemistry. In normal portal vein ET receptor density was 149±
25 amol/mm2 in the medial smooth muscle layer with an ETA:ETB
ratio of 57:43 (96±15 amol/mm2 ETA and 70±8 amol/mm2 ETB).
In portal vein from patients with cirrhosis the overall density of ET re-
ceptors was lower (131 amol/mm2) but the ratio of ETA:ETB was
90:10. Therefore, in contrast to parenchyma, in portal vein there
was no change in medial ETA receptor expression but there was a
downregulation of ETB receptors (Fig. 3C and D).
Competition binding
The results of the ability of the three antagonists, BQ788, sitaxen-

tan and ambrisentan to compete for the binding of [
125
I]-ET-1 are

shown in Fig. 5. Pooling data from competition binding curves for
the three antagonists, BQ788, sitaxentan and ambrisentan (Fig. 5)
total ET receptor density were not different in cirrhotic liver (150.0±
22.7 fmol/mg) compared to normal liver (125.6±12.2 fmol/mg). The
ETB receptor comprised the predominant subtype in normal liver and
the proportion of ETB was increased further in disease with a shift in
ETA:ETB ratio from 20:80 in normal tissue to 5:95 with cirrhosis. As
expected, the ETB selective antagonist, BQ788 exhibited high affinity
for the ETB receptor in both normal (KD 37±8 nM) and diseased
(133±34 nM) liver with lower micromolar affinity for the ETA recep-
tor (normal ETA KD 65±88 μM; cirrhosis ETA KD 46±108 μM). Since
the majority of the ETB receptors in liver were of the ETB subtype, the
density of ETA receptors in normal and particularly cirrhotic liver was
too low to derive an accurate affinity constant at the ETA receptor for
sitaxentan and ambrisentan. However, from the competition curves it

image of Fig.�3


Fig. 4. (A) Haematoxylin and eosin staining of a transverse section of normal and (D) cirrhotic liver, showing regenerative nodules (N) and fibrous septa (black arrow). (B) Colour-coded
autoradiograph showing the distribution of [

125
I]-ET-1 binding to ETA and (C) ETB in human normal liver. (E) ETA and (F) ETB in cirrhosis liver parenchyma. Scale bars represents 1 mm.
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was clear that both compounds competed for the ETB receptors in the
low micromolar range.

Endothelial cell specific ETB knockout mice
Livers from endothelial cell ETB knockout mice were examined

and compared to normal murine liver under light microscopy
(Fig. 6). The liver morphology of ETB knockout mice was markedly
different to normal murine liver, with loss of the wide spread sinusoi-
dal pattern seen in normal livers. In the knockout mice, sinusoids
were reduced in both number and absolute diameter, while large
intrahepatic veins were congested with red blood cells. Sinusoidal
diameter was reduced from 22.3±1.5 μm in normal murine liver to
6.0±0.4 μm in knockout mice (P=0.0004).

Discussion

Studies on the ET pathway in cirrhosis have thus far focused on
the liver parenchyma itself (Ikura et al., 2004). This study charac-
terises ET receptors for the first time in human portal vein. Consistent
with studies on other human vessels, we found that smooth muscle
Fig. 5. (A) Competition binding of [
125
I]-ET-1 against sitaxentan, (B) ambrisentan and (C) BQ

rors of the mean.
cell ETA is the main receptor subtype in the media of hepatic artery
and portal vein (Bacon and Davenport, 1996; Davenport et al.,
1995). As there was a six fold decrease in ETB density in portal vein
media, the ETA: ETB ratio in portal vein media changed from 57:43
in health to 90:10 in cirrhosis. It is possible that elevated plasma
ET-1 in cirrhosis coupled with relatively high ETA expression in portal
vein media may increase pre-hepatic portal resistance and cause PH.
Therefore, ETA antagonism may be beneficial in dilating the portal
vein in PH. It should be emphasised that these are preliminary de-
scriptive studies and the results justify further experiments to deter-
mine reproducibility in a larger number of individuals.

Immunofluorescence staining for ETA and ETB was found along the
endothelium of normal and cirrhosis hepatic artery and portal vein.
While it is well established that ETB is present on the endothelium
of human vessels, endothelial ETA is less well documented
(Nishimura et al., 1995). Endothelial ETB mediates NO release from
the endothelium, and is an important counter mechanism to ET-1 in-
duced vasoconstriction on smooth muscle ETA (Hirata et al., 1993;
Honoré et al., 2002). Moreover, endothelial ETB functions as clearing
receptors that remove excess ET-1 from the circulation (Johnstrom
788 in human normal and cirrhotic liver. Each value represents mean and standard er-

image of Fig.�4
image of Fig.�5


Fig. 6. (A) Brightfield image of normal (A and B) and endothelial cell ETB knockout mice (C to D) livers using haematoxylin and eosin staining. Sinusoid (black arrow) diameter is
reduced in knockout mice and results in lost of the normal sinusoidal pattern on low magnification. In the knockout mice, intrahepatic branches of the portal vein are congested
with blood (red arrow).
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et al., 2005; Kelland et al., 2010). While ETA antagonism may be ben-
eficial in PH, whether ETB antagonism is also helpful is less straight
forward, as the opposing functions of endothelial ETB (dilatation
and reducing plasma ET-1) and smooth muscle ETB (constriction)
complicate therapeutic choice. Nevertheless, animal studies showed
that mixed antagonists such as bosentan are as effective as ETA selec-
tive antagonists in reducing portal pressure (Feng et al., 2009; Rockey
andWeisiger, 1996). The choice between selective ETA and mixed an-
tagonism continues to be debated in the treatment of pulmonary ar-
terial hypertension (Vachiéry and Davenport, 2009) and renal
failure (Davenport and Maguire, 2011).

Interestingly sinusoid diameter was reduced three fold in the
knockout compared to wild type mice and intrahepatic branches of
the portal vein were congested with red blood cells (Fig. 6). This sug-
gests that blood was unable to pass through sinusoids effectively
owing to reduced sinusoidal diameter and produced congestion in
the portal venous system. Hence, sinusoidal endothelial cell ETB
may be critical in maintaining adequate sinusoidal diameter. There-
fore, ETB blockade which causes sinusoid constriction and consequent
liver ischaemia may contribute to the liver toxicity observed with
mixed antagonists. This suggests additional benefit of ETA selective
compounds.

This study has identified changes in ET receptor ratio and density
within human cirrhotic liver and portal vein. ET receptor densities
from quantitative autoradiography and competition binding experi-
ments are consistent with those suggested by previous studies on
the human liver (Yokomori et al., 2001b). Both techniques demon-
strated a change towards upregulation of ETB and downregulation
of ETA in the cirrhotic liver. The significance of these changes is unde-
termined, but it may be a physiological response towards normalising
elevated portal pressure in cirrhosis. Adding the results from this
study to data from animal models, selective ETA antagonism may be
a beneficial therapy for cirrhosis and PH by four distinct mechanisms.
First, it may reduce prehepatic portal resistance by dilatation of the
portal vein. Second, it may decrease intrahepatic resistance by reduc-
ing hepatic stellate cells contraction and increasing sinusoid diame-
ter. Third, it may also reduce intrahepatic resistance by reversing
fibrosis and restoring normal liver architecture. Fourth, it preserves
the beneficial sinusoidal endothelial cell ETB mediated dilatation
and clearance of elevated plasma ET-1. Further in vitro studies using
human tissues are required with antagonists of the propionic acid
class of compounds (such as ambrisentan) that do not display signif-
icant hepatotoxicity but as our results show are ETA selective in
human liver, for the treatment of cirrhosis.
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