231 research outputs found
Charge carrier density collapse in La_0.67Ca_0.33MnO_3 and La_0.67Sr_0.33MnO_3 epitaxial thin films
We measured the temperature dependence of the linear high field Hall
resistivity of La_0.67Ca_0.33MnO_3 (T_C=232K) and La_0.67Sr_0.33MnO_3
(T_C=345K) thin films in the temperature range from 4K up to 360K in magnetic
fields up to 20T. At low temperatures we find a charge carrier density of 1.3
and 1.4 holes per unit cell for the Ca- and Sr-doped compound, respectively. In
this temperature range electron-magnon scattering contributes to the
longitudinal resistivity. At the ferromagnetic transition temperature T_C a
dramatic drop in the number of current carriers down to 0.6 holes per unit
cell, accompanied by an increase in unit cell volume, is observed. Corrections
of the Hall data due to a non saturated magnetic state will lead a more
pronounced charge carrier density collapse.Comment: 5 pages, 5 EPS figures, submitted to Eur. Phys. J.
Extensive infrared spectroscopic study of CuO: signatures of strong spin-phonon interaction and structural distortion
Optical properties of single-crystal monoclinic CuO in the range 70 - 6000
\cm were studied at temperatures from 7 to 300 K. Normal reflection spectra
were obtained from the (001) and (010) crystal faces thus giving for the first
time separate data for the and phonon modes excited in the
purely transverse way (TO modes). Mode parameters, including polarizations of
the modes not determined by the crystal symmetry, were extracted by the
dispersion analysis of reflectivity curves as a function of temperature.
Spectra of all the components of the optical conductivity tensor were obtained
using the Kramers-Kronig method recently extended to the case of the
low-symmetry crystals. The number of strong phonon modes is in agreement with
the factor-group analysis for the crystal structure, currently accepted for the
CuO. However, several "extra" modes of minor intensity are detected. Comparison
of frequencies of "extra" modes with the available phonon dispersion curves
points to possible "diagonal" doubling of the unit cell \{{\bf a}, {\bf b},
{\bf c}\} \{{\bf a}+{\bf c}, {\bf b}, {\bf a}-{\bf c}\} and formation of
the superlattice. The previously reported softening of the mode
( 400 \cm) with cooling at is found to be 10 % for the TO
mode. The mode is very broad at high temperatures and strongly narrows in the
AFM phase. We attribute this effect to strong resonance coupling of this mode
to optical or acoustic bi-magnons and reconstruction of the magnetic
excitations spectrum at the N\'eel point. A significant anisotropy of
is observed: it was found to be 5.9 along the {\bf b}-axis,
6.2 along the {[}101{]} chains and 7.8 the {[}10{]} chains. The
"transverse" effective charge is value is about 2 electrons.Comment: 23 pages, 14 figures, REVTeX, submitted to PR
Infrared studies of a La_(0.67)Ca_(0.33)MnO_3 single crystal:âOptical magnetoconductivity in a half-metallic ferromagnet
The infrared reflectivity of a La_(0.67)Ca_(0.33)MnO_3 single crystal is studied over a broad range of temperatures (78â340 K), magnetic fields (0â16 T), and wave numbers (20â9000cm^(-1)). The optical conductivity gradually changes from a Drude-like behavior to a broad peak feature near 5000cm-1 in the ferromagnetic state below the Curie temperature T_C=307K. Various features of the optical conductivity bear striking resemblance to recent theoretical predictions based on the interplay between the double exchange interaction and the Jahn-Teller electron-phonon coupling. A large optical magnetoconductivity is observed near T_C
Infrared Studies of a La_{0.67}Ca_{0.33}MnO_3 Single Crystal: Optical Magnetoconductivity in a Half-Metallic Ferromagnet
The infrared reflectivity of a single crystal
is studied over a broad range of temperatures (78-340 K), magnetic fields (0-16
T), and wavenumbers (20-9000 cm). The optical conductivity gradually
changes from a Drude-like behavior to a broad peak feature near 5000 cm
in the ferromagnetic state below the Curie temperature . Various
features of the optical conductivity bear striking resemblance to recent
theoretical predictions based on the interplay between the double exchange
interaction and the Jahn-Teller electron-phonon coupling. A large optical
magnetoconductivity is observed near .Comment: 4 pages, 4 figures, Latex, PostScript; The 7th Joint MMM-Intermag
Conference,San Francisco, January 6-9, 1998; The Int. Conf. on Strongly
Correlated Electron Systems, Paris, July 15-18,199
Optimized Trigger for Ultra-High-Energy Cosmic-Ray and Neutrino Observations with the Low Frequency Radio Array
When an ultra-high energy neutrino or cosmic ray strikes the Lunar surface a
radio-frequency pulse is emitted. We plan to use the LOFAR radio telescope to
detect these pulses. In this work we propose an efficient trigger
implementation for LOFAR optimized for the observation of short radio pulses.Comment: Submitted to Nuclear Instruments and Methods in Physics Research
Section
Lofar low-band antenna observations of the 3C 295 and boötes fields : Source counts and ultra-steep spectrum sources
© 2018 The American Astronomical Society. All rights reserved.We present Low Frequency Array (LOFAR) Low Band observations of the Boötes and 3C 295 fields. Our images made at 34, 46, and 62 MHz reach noise levels of 12, 8, and 5 mJy beam-1, making them the deepest images ever obtained in this frequency range. In total, we detect between 300 and 400 sources in each of these images, covering an area of 17-52 deg2. From the observations, we derive Euclidean-normalized differential source counts. The 62 MHz source counts agree with previous GMRT 153 MHz and Very Large Array 74 MHz differential source counts, scaling with a spectral index of -0.7. We find that a spectral index scaling of -0.5 is required to match up the LOFAR 34 MHz source counts. This result is also in agreement with source counts from the 38 MHz 8C survey, indicating that the average spectral index of radio sources flattens toward lower frequencies. We also find evidence for spectral flattening using the individual flux measurements of sources between 34 and 1400 MHz and by calculating the spectral index averaged over the source population. To select ultra-steep spectrum (α < -1.1) radio sources that could be associated with massive high-redshift radio galaxies, we compute spectral indices between 62 MHz, 153 MHz, and 1.4 GHz for sources in the Boötes field. We cross-correlate these radio sources with optical and infrared catalogs and fit the spectral energy distribution to obtain photometric redshifts. We find that most of these ultra-steep spectrum sources are located in the 0.7 âČ z âČ 2.5 range.Peer reviewe
Charging Ultrasmall Tunnel Junctions in Electromagnetic Environment
We have investigated the quantum admittance of an ultrasmall tunnel junction
with arbitrary tunneling strength under an electromagnetic environment. Using
the functional integral approach a close analytical expression of the quantum
admittance is derived for a general electromagnetic environment. We then
consider a specific controllable environment where a resistance is connected in
series with the tunneling junction, for which we derived the dc quantum
conductance from the zero frequency limit of the imaginary part of the quantum
admittance. For such electromagnetic environment the dc conductance has been
investigated in recent experiments, and our numerical results agree
quantitatively very well with the measurements. Our complete numerical results
for the entire range of junction conductance and electromagnetic environmental
conductance confirmed the few existing theoretical conclusions.Comment: 7 pages, 3 ps-figure
First LOFAR observations at very low frequencies of cluster-scale non-thermal emission: the case of Abell 2256
Abell 2256 is one of the best known examples of a galaxy cluster hosting
large-scale diffuse radio emission that is unrelated to individual galaxies. It
contains both a giant radio halo and a relic, as well as a number of head-tail
sources and smaller diffuse steep-spectrum radio sources. The origin of radio
halos and relics is still being debated, but over the last years it has become
clear that the presence of these radio sources is closely related to galaxy
cluster merger events. Here we present the results from the first LOFAR Low
band antenna (LBA) observations of Abell 2256 between 18 and 67 MHz. To our
knowledge, the image presented in this paper at 63 MHz is the deepest ever
obtained at frequencies below 100 MHz in general. Both the radio halo and the
giant relic are detected in the image at 63 MHz, and the diffuse radio emission
remains visible at frequencies as low as 20 MHz. The observations confirm the
presence of a previously claimed ultra-steep spectrum source to the west of the
cluster center with a spectral index of -2.3 \pm 0.4 between 63 and 153 MHz.
The steep spectrum suggests that this source is an old part of a head-tail
radio source in the cluster. For the radio relic we find an integrated spectral
index of -0.81 \pm 0.03, after removing the flux contribution from the other
sources. This is relatively flat which could indicate that the efficiency of
particle acceleration at the shock substantially changed in the last \sim 0.1
Gyr due to an increase of the shock Mach number. In an alternative scenario,
particles are re-accelerated by some mechanism in the downstream region of the
shock, resulting in the relatively flat integrated radio spectrum. In the radio
halo region we find indications of low-frequency spectral steepening which may
suggest that relativistic particles are accelerated in a rather inhomogeneous
turbulent region.Comment: 13 pages, 13 figures, accepted for publication in A\&A on April 12,
201
Magnetic field induced polarization effects in intrinsically granular superconductors
Based on the previously suggested model of nanoscale dislocations induced
Josephson junctions and their arrays, we study the magnetic field induced
electric polarization effects in intrinsically granular superconductors. In
addition to a new phenomenon of chemomagnetoelectricity, the model predicts
also a few other interesting effects, including charge analogues of Meissner
paramagnetism (at low fields) and "fishtail" anomaly (at high fields). The
conditions under which these effects can be experimentally measured in
non-stoichiometric high-T_c superconductors are discussed.Comment: 10 pages (REVTEX), 5 EPS figures; revised version accepted for
publication in JET
Imaging Jupiter's radiation belts down to 127 MHz with LOFAR
Context. Observing Jupiter's synchrotron emission from the Earth remains
today the sole method to scrutinize the distribution and dynamical behavior of
the ultra energetic electrons magnetically trapped around the planet (because
in-situ particle data are limited in the inner magnetosphere). Aims. We perform
the first resolved and low-frequency imaging of the synchrotron emission with
LOFAR at 127 MHz. The radiation comes from low energy electrons (~1-30 MeV)
which map a broad region of Jupiter's inner magnetosphere. Methods (see article
for complete abstract) Results. The first resolved images of Jupiter's
radiation belts at 127-172 MHz are obtained along with total integrated flux
densities. They are compared with previous observations at higher frequencies
and show a larger extent of the synchrotron emission source (>=4 ). The
asymmetry and the dynamic of east-west emission peaks are measured and the
presence of a hot spot at lambda_III=230 {\deg} 25 {\deg}. Spectral flux
density measurements are on the low side of previous (unresolved) ones,
suggesting a low-frequency turnover and/or time variations of the emission
spectrum. Conclusions. LOFAR is a powerful and flexible planetary imager. The
observations at 127 MHz depict an extended emission up to ~4-5 planetary radii.
The similarities with high frequency results reinforce the conclusion that: i)
the magnetic field morphology primarily shapes the brightness distribution of
the emission and ii) the radiating electrons are likely radially and
latitudinally distributed inside about 2 . Nonetheless, the larger extent
of the brightness combined with the overall lower flux density, yields new
information on Jupiter's electron distribution, that may shed light on the
origin and mode of transport of these particles.Comment: 10 pages, 12 figures, accepted for publication in A&A (27/11/2015) -
abstract edited because of limited character
- âŠ