392 research outputs found

    Sonchus arvensis - a challenge for organic farming

    Get PDF
    Perennial sow-thistle (Sonchus arvensis L.) represents an increasing problem in Finland. Options for mechanical and cultural control of S. arvensis were studied in a 3 year field experiment on clay soil under organic production

    Modular Thermal Control of Protein Dimerization

    Get PDF
    Protein–protein interactions and protein localization are essential mechanisms of cellular signal transduction. The ability to externally control such interactions using chemical and optogenetic methods has facilitated biological research and provided components for the engineering of cell-based therapies and materials. However, chemical and optical methods are limited in their ability to provide spatiotemporal specificity in light-scattering tissues. To overcome these limitations, we present “thermomers”, modular protein dimerization domains controlled with temperature—a form of energy that can be delivered to cells both globally and locally in a wide variety of in vitro and in vivo contexts. Thermomers are based on a sharply thermolabile coiled-coil protein, which we engineered to heterodimerize at a tunable transition temperature within the biocompatible range of 37–42 °C. When fused to other proteins, thermomers can reversibly control their association, as demonstrated via membrane localization in mammalian cells. This technology enables remote control of intracellular protein–protein interactions with a form of energy that can be delivered with spatiotemporal precision in a wide range of biological, therapeutic, and living material scenarios

    Condylar Growth in Rhesus Monkeys

    Full text link
    Growth of the mandibular condyle was studied in four rhesus monkeys of different ages. Indexes of 3H-thymidine labeling indicated high premitotic activity, which decreased with age, in the interniediate zone of cartilage and the zone of erosion and bone formation. Premitotic uptake in the articular zone was independent of age.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/67121/2/10.1177_00220345690480061401.pd

    Age-dependent expression of DNMT1 and DNMT3B in PBMCs from a large European population enrolled in the MARK-AGE study

    Get PDF
    Aging is associated with alterations in the content and patterns of DNA methylation virtually throughout the entire human lifespan. Reasons for these variations are not well understood. However, several lines of evidence suggest that the epigenetic instability in aging may be traced back to the alteration of the expression of DNA methyltransferases. Here, the association of the expression of DNA methyltransferases DNMT1 and DNMT3B with age has been analysed in the context of the MARK-AGE study, a large-scale cross-sectional study of the European general population. Using peripheral blood mononuclear cells, we assessed the variation of DNMT1 and DNMT3B gene expression in more than two thousand age-stratified women and men (35-75 years) recruited across eight European countries. Significant age-related changes were detected for both transcripts. The level of DNMT1 gradually dropped with aging but this was only observed up to the age of 64 years. By contrast, the expression of DNMT3B decreased linearly with increasing age and this association was particularly evident in females. We next attempted to trace the age-related changes of both transcripts to the influence of different variables that have an impact on changes of their expression in the population, including demographics, dietary and health habits, and clinical parameters. Our results indicate that age affects the expression of DNMT1 and DNMT3B as an almost independent variable in respect of all other variables evaluated

    Epigenome-450K-wide methylation signatures of active cigarette smoking : The Young Finns Study

    Get PDF
    Smoking as a major risk factor for morbidity affects numerous regulatory systems of the human body including DNA methylation. Most of the previous studies with genome-wide methylation data are based on conventional association analysis and earliest threshold-based gene set analysis that lacks sensitivity to be able to reveal all the relevant effects of smoking. The aim of the present study was to investigate the impact of active smoking on DNA methylation at three biological levels: 5'-C-phosphate-G-3' (CpG) sites, genes and functionally related genes (gene sets). Gene set analysis was done with mGSZ, a modern threshold-free method previously developed by us that utilizes all the genes in the experiment and their differential methylation scores. Application of such method in DNA methylation study is novel. Epigenome-wide methylation levels were profiled from Young Finns Study (YFS) participants' whole blood from 2011 follow-up using Illumina Infinium Hu-manMethylation450 BeadChips. We identified three novel smoking related CpG sites and replicated 57 of the previously identified ones. We found that smoking is associated with hypomethylation in shore (genomic regions 0-2 kilobases from CpG island). We identified smoking related methylation changes in 13 gene sets with false discovery rate (FDR)Peer reviewe

    APOE Genotypes, Lipid Profiles, and Associated Clinical Markers in a Finnish Population with Cardiovascular Disease Risk Factors

    Get PDF
    Introduction: The APOE ε4 allele predisposes to high cholesterol and increases the risk for lifestyle-related diseases such as Alzheimer’s disease and cardiovascular diseases (CVDs). The aim of this study was to analyse interrelationships of APOE genotypes with lipid metabolism and lifestyle factors in middle-aged Finns among whom the CVD risk factors are common. Methods: Participants (n = 211) were analysed for APOE ε genotypes, physiological parameters, and health- and diet-related plasma markers. Lifestyle choices were determined by a questionnaire. Results: APOE genotypes ε3/ε4 and ε4/ε4 (ε4 group) represented 34.1% of the participants. Genotype ε3/ε3 (ε3 group) frequency was 54.5%. Carriers of ε2 (ε2 group; ε2/ε2, ε2/ε3 and ε2/ε4) represented 11.4%; 1.9% were of the genotype ε2/ε4. LDL and total cholesterol levels were lower (p < 0.05) in the ε2 carriers than in the ε3 or ε4 groups, while the ε3 and ε4 groups did not differ. Proportions of plasma saturated fatty acids (SFAs) were higher (p < 0.01), and omega-6 fatty acids lower (p = 0.01) in the ε2 carriers compared with the ε4 group. The ε2 carriers had a higher (p < 0.05) percentage of 22:4n-6 and 22:5n-6 and a lower (p < 0.05) percentage of 24:5n-3 and 24:6n-3 than individuals without the ε2 allele. Conclusions: The plasma fatty-acid profiles in the ε2 group were characterized by higher SFA and lower omega-6 fatty-acid proportions. Their lower cholesterol values indicated a lower risk for CVD compared with the ε4 group. A novel finding was that the ε2 carriers had different proportions of 22:4n-6, 22:5n-6, 24:5n-3, and 24:6n-3 than individuals without the ε2 allele. The significance of the differences in fatty-acid composition remains to be studied.Peer reviewe

    Reversibility of myocardial metabolism and remodelling in morbidly obese patients 6 months after bariatric surgery

    Get PDF
    AbstractAIMS: To study myocardial substrate uptake, structure and function, before and after bariatric surgery, to clarify the interaction between myocardial metabolism and cardiac remodelling in morbid obesity.METHODS: We studied 46 obese patients (age 44 ± 10 years, body mass index [BMI] 42 ± 4 kg/m2 ), including 18 with type 2 diabetes (T2D) before and 6 months after bariatric surgery and 25 healthy age-matched control group subjects. Myocardial fasting free fatty acid uptake (MFAU) and insulin-stimulated myocardial glucose uptake (MGU) were measured using positron-emission tomography. Myocardial structure and function, and myocardial triglyceride content (MTGC) and intrathoracic fat were measured using magnetic resonance imaging and magnetic resonance spectroscopy.RESULTS: The morbidly obese study participants, with or without T2D, had cardiac hypertrophy, impaired myocardial function and substrate metabolism compared with the control group. Surgery led to marked weight reduction and remission of T2D in most of the participants. Postoperatively, myocardial function and structure improved and myocardial substrate metabolism normalized. Intrathoracic fat, but not MTGC, was reduced. Before surgery, BMI and MFAU correlated with left ventricular hypertrophy, and BMI, age and intrathoracic fat mass were the main variables associated with cardiac function. The improvement in whole-body insulin sensitivity correlated positively with the increase in MGU and the decrease in MFAU.CONCLUSIONS: In the present study, obesity and age, rather than myocardial substrate uptake, were the causes of cardiac remodelling in morbidly obese patients with or without T2D. Cardiac remodelling and impaired myocardial substrate metabolism are reversible after surgically induced weight loss and amelioration of T2D.</div
    • …
    corecore