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Summary

Aging is associated with alterations in the content and patterns

of DNA methylation virtually throughout the entire human

lifespan. Reasons for these variations are not well understood.

However, several lines of evidence suggest that the epigenetic

instability in aging may be traced back to the alteration of the

expression of DNA methyltransferases. Here, the association of

the expression of DNA methyltransferases DNMT1 and DNMT3B

with age has been analysed in the context of the MARK-AGE

study, a large-scale cross-sectional study of the European general

population. Using peripheral blood mononuclear cells, we

assessed the variation of DNMT1 and DNMT3B gene expression

in more than two thousand age-stratified women and men (35–

75 years) recruited across eight European countries. Significant

age-related changes were detected for both transcripts. The level

of DNMT1 gradually dropped with aging but this was only

observed up to the age of 64 years. By contrast, the expression of

DNMT3B decreased linearly with increasing age and this associ-

ation was particularly evident in females. We next attempted to

trace the age-related changes of both transcripts to the influence

of different variables that have an impact on changes of their

expression in the population, including demographics, dietary

and health habits, and clinical parameters. Our results indicate

that age affects the expression of DNMT1 and DNMT3B as an

almost independent variable in respect of all other variables

evaluated.
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Introduction

Epigenetic processes are a molecular interface that mediates the

interaction between genome and environment during the entire

lifespan of organisms. Aberrant epigenetic signalling, including DNA

methylation defects, plays a crucial role in aging (Zampieri et al.,

2015). The understanding of the mechanisms behind these events is

an important research topic as it can reveal the molecular mechanisms

contributing to age-associated physiological decline and disease.

DNA methylation is a modification of the genome that occurs after

DNA replication by the attachment of a methyl group to the cytosine

of a CpG dinucleotide. In mammals, 5-methylcytosine (5mC) repre-

sents an epigenetic modification of the genome that marks transcrip-

tionally repressed domains and serves as a heritable signal sufficient to

restore silent chromatin following DNA replication (Bird, 2002). In the

human genome, almost 80% of the CpGs are methylated in

nonrandom fashion with the remaining unmethylated residues pref-

erentially restricted to CpG islands (CGIs) within gene promoters

(Deaton & Bird, 2011). This bimodal pattern is established during
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development and differentiation when tissue-specific changes in DNA

methylation shape the epigenetic patterns of each individual cell type.

This accomplishes transcriptional repression of repetitive DNA

sequences and allows housekeeping genes to be expressed, but it

also provides long-term stability to the tissue-specific gene expression

profile of somatic cells.

DNA methylation patterns are dynamic states balanced by methyla-

tion and demethylation processes. The ‘maintenance methyltransferase’

DNMT1 mainly maintains the methylation patterns across replication

cycles while the de novo DNMT3A and DNMT3B enzymes mainly

introduce methyl groups onto DNA at sites that had been unmethylated

(Jurkowska et al., 2011).

Regarding DNA demethylation, both passive and active processes

have been proposed. Passive demethylation includes everything that

negatively affects DNA methyltransferase action, thus leading to the

loss of 5mC marks on the genome during DNA replication. However,

evidence has been accumulated indicating the existence of replication-

independent active DNA demethylation involving 5-hydroxymethylcy-

tosine formation and DNA repair mechanisms (Sch€ubeler, 2015).

Several studies have clearly demonstrated that distinct DNA methy-

lation changes highly correlate with aging throughout the entire lifespan

of humans and mice. Collectively, these studies have shown that aging,

similar to cancer, is associated with gradual but profound changes in

DNA methylation where the epigenome is marked by global hypomethy-

lation together with an opposite process of focal hypermethylation

preferentially at CGI promoters (Issa, 2014).

These phenomena erode the normal genomic methylation patterns

leading to divergent methylomes in the normal population as a

function of chronological age. However, directional changes in specific

regions in aged individuals occur in the context of age-associated

increase of DNA methylation entropy and this process is commonly

defined as ‘epigenetic drift’ (Fraga et al., 2005). Although the

presence of an aberrant DNA methylation signalling and its outcome

in aging progression are well described, the underlying molecular

mechanisms are far from being understood.

Transcriptional control of DNA methyltransferases (DNMTs) can be

responsible for changes in protein level or enzymatic activity both in

physiological and in pathological conditions (Tsai et al., 2012; Calabrese

et al., 2014). Previous studies indicate that aging affects the expression

of DNMTs, suggesting this as being one of the mechanisms involved in

the deregulation of the methylation patterns observed in aging.

However, these observations derive from very few studies analysing

relatively small sample sizes (Zhang et al., 2002; Casillas et al., 2003;

Balada et al., 2008; Xiao et al., 2008; Li et al., 2010; Qian & Xu, 2014).

Here, we report results from an European large-scale cross-sectional

study aimed at investigating the association of DNMTs expression with

age as part of the MARK-AGE project.

MARK-AGE is a European-wide population study, supported by the

European Commission (FP7), aiming to discover biomarkers of aging

which would serve as a reliable measure of biological age (B€urkle et al.,

2015; Capri et al., 2015).

We measured the transcript levels of DNMT1 and DNMT3B genes and

analysed their variation with age in peripheral blood mononuclear cells

(PBMCs) from more than two thousand age-stratified donors

(35–75 years) from the general population from eight European

countries (Capri et al., 2015).

Our data show that age has an influence on the expression of DNMT1

and DNMT3B genes in PBMCs. This interaction does not significantly

depend on nutritional, lifestyle and clinical variables influencing the

expression of DNMTs in the population.

Results

Characteristics of the study population

The analysis of the transcript levels of DNMT1 and DNMT3B was carried

out on PBMCs from blood samples obtained from donors (2453

individuals) from eight European countries (Table 1).

The largest group of samples consisted of the RASIG (Randomly-

Recruited Age-Stratified Individuals from the General population),

representing individuals undergoing a normal aging process.

Offspring of nonagenarians previously studied in the GEHA study

(Genetics of Healthy Ageing; Franceschi et al., 2007) and termed GO

(‘GEHA offspring’) were also recruited as a potential model of ‘retarded

aging’, based on the assumption that their genetic background may

predispose them to longevity. As a control for environmental factors and

lifestyle, recruitment of GO was accompanied by the recruitment of their

spouses, termed SGO (‘spouses of the GO’) (B€urkle et al., 2015; Capri

et al., 2015).

MARK-AGE subjects covered the age range between 35 and 75 years

and were stratified into four 10-year age groups. The age distribution of

RASIG individuals was almost homogeneous, while GO and SGO

individuals fell into age ranges > 54 years. The composition of male

and female individuals was mainly comparable in all age groups, albeit

female representation was a few percentage points larger than males. In

agreement with literature data studying subjects in the age range 35–

75 years, the body mass index (BMI) appeared to increase with age

indicating that the analysed population was effectively representative of

a physiological aging process. The characteristics of the study population

referred to each recruiting centre are reported in Table S1 (Supporting

information).

Identification of outliers and distribution tests

Due to positively skewed values, DNMT1 and DNMT3B expression data

failed to pass the Kolmogorov–Smirnov test for normal distribution. We

also identified data of DNMT1 mRNA (three samples) with values above

89 the interquartile range, which were considered outliers and excluded

in all parametric analyses (but included in nonparametric tests, for

example Spearman correlation and Kruskal–Wallis, which are not

sensitive to few outliers). After removal of outliers, the DNMT1

expression data still failed to pass normality tests. Hence, we analysed

Q-Q plots of the log-transformed and not-transformed variables of

DNMT1 and DNMT3B to establish the distribution that best represented

our data. On the basis of our analysis, the distributions that better

represented data were gamma distribution for DNMT1 and normal

distribution for log-transformed DNMT3B data (Fig. S1, Supporting

information). However, since the optimal distribution was not identified,

we performed both parametric and nonparametric tests to verify the

robustness of results.

Expression levels of DNMT1 and DNMT3B transcripts with

respect to age and demographics

In the RASIG samples, we identified nonlinear but significant changes of

DNMT1 in age groups by parametric and nonparametric tests. DNMT1

transcript decreased gradually below 64 years of age, transiently

achieving a significant reduction in the 55–64 vs. the 35–44 age group

before returning to levels comparable to the under-54 in individuals over

the age of 65 years. Regarding DNMT3B, its expression appeared to
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decrease linearly with age, with a significant reduction in the two oldest

age classes compared to the first one (Table 2). Graphical representation

of DNMT1 and DNMT3B data describes better the minimal, but

significant age-related changes observed in the samples. In particular,

DNMT3B displayed a significant linear decrease with age, while DNMT1

displayed a U-shaped bimodal pattern. This U-shaped bimodal pattern

for DNMT1 mRNA variation with age was less evident when the samples

were analysed as a whole (RASIG together with GO and SGO samples)

due to a lack of significance for the recovery of transcript levels in the

oldest age group compared to younger age groups. Regarding DNMT3B,

its reduction with increasing age was independent of the inclusion of GO

and SGO in the analysis (Fig. S2).

Association between age and DNMTs transcript levels in the RASIG

population was further tested by correlation analyses. DNMT3B showed

a weak negative linear correlation with age. However, this association

remained significant only in females when the samples were split based

on gender. The same analysis confirmed that the association of DNMT1

with age was not linear when tested over the entire age range, which is

in line with the U-shaped trend of DNMT1 variation with age.

Consistently, a quadratic relationship between DNMT1 and age showed

a better fit to the data than the linear one, which was, instead,

significant and negative for both genders when individuals over the age

of 65 years were excluded from the analysis (Fig. 1). The level of

expression of both DNMT1 and DNMT3B was dissimilar across the

different European countries (Table 2). Moreover, the expression levels

across age groups within each recruitment centre were significantly

different for part of them probably as a consequence of the high

variability, gender-specific effects and the relative lower sample size of

each centre compared to the overall sample (Table S2).

Table 2 also shows that both the DNMT1 and DNMT3B mRNA

expression were significantly higher in females compared to males. This

association with gender was evident for DNMT1 only by the generalized

linear model (GLM) test that includes age and country as covariates,

suggesting these variables as confounding factors in the nonparametric

test. The same conclusions can be drawn for the positive association

observed between DNMT3B expression and BMI.

Investigation of variables (lifestyle, dietary habits,

haematological parameters and cardiovascular risk factors)

that potentially affect DNMT1 and DNMT3BmRNA expression

From all subjects enrolled in the MARK-AGE project, a large number of

anthropometric and medical data were collected. In a preliminary

analysis, we evaluated variables that might have a potential impact on

DNMT1 and DNMT3B expression, including dietary and lifestyle habits,

haematological parameters, and cardiovascular or diabetes risk factors.

Several variables were found to be associated with DNMTs expression by

nonparametric Kruskal–Wallis (KW) test only. In fact, many of these

associations were disproved or blunted by GLM which included the

effects of gender, recruitment centre and age as covariates (See Tables

S3–S5). Such evidence indicates that those associations with DNMTs

expression, reported by KW analysis, were indirect. Examples of such

discordance include the associations of DNMT1 expression with French

fries and brown bread consumption or with glucose and homocysteine

blood levels.

Based on the congruence between KW and GLM tests, a limited set of

variables appeared to be consistently associated with the expression of

DNMTs. Apart from a link between weekly consumption of white bread

and DNMT1mRNA levels, no association with other self-reported dietary

habits was detected (Table S3). This also concerns consumption of

alcoholic beverages and smoking habits as well as cardiovascular and

diabetes risk biomarkers (Table S4). As far as haematological parameters

are concerned (Table S5), DNMT1 and DNMT3B mRNAs were less

expressed with increasing monocyte counts. Instead, only DNMT1 was

Table 1 Characteristics of the study population by age groups†

Age groups All 1 2 3 4

P

Age range (years) 35–75 35–44 45–54 55–64 65–75

N 2453 383 484 807 779

Age (years) 57.6 � 10.7 39.6 � 2.8 49.6 � 2.8 59.9 � 2.8 69.0 � 3.0 < 0.001

Male % (n) 47 (1145) 46 (177) 47 (226) 45 (366) 48 (376) 0.707

Smoker, never 52 (1264) 59 (227) 48 (233) 49 (393) 53 (401) < 0.001

Former 34 (826) 17 (66) 33 (162) 37 (297) 39 (301)

Current 15 (363) 23 (90) 18 (89) 14 (117) 9 (67)

Group, GO 18 (437) 0 (1) 3 (17) 25 (205) 28 (214) < 0.001

RASIG 72 (1774) 99 (381) 93 (449) 60 (483) 59 (461)

SGO 10 (242) 0 (1) 4 (18) 15 (119) 13 (104)

BMI (kg/m2) 26.3 � 4.5 24.9 � 4.6 25.6 � 4.4 26.7 � 4.5 27.0 � 4.3 < 0.001

< 25 43 (1059) 59 (226) 50 (244) 39 (317) 35 (272)

25 to < 30 39 (957) 28 (109) 35 (171) 41 (331) 44 (346) < 0.001

≥ 30 18 (436) 12 (48) 14 (69) 20 (159) 21 (160)

Finland 10 (249) 2 (9) 4 (18) 13 (109) 14 (113)

Italy 20 (485) 26 (98) 22 (105) 18 (144) 18 (138)

Austria 11 (267) 18 (69) 14 (69) 9 (69) 8 (60)

Greece 13 (317) 18 (71) 16 (78) 11 (86) 10 (82) < 0.001

Poland 11 (270) 12 (46) 11 (52) 12 (99) 9 (73)

The Netherlands 8 (189) 0 (0) 1 (3) 10 (79) 14 (107)

Belgium 14 (350) 8 (30) 14 (69) 16 (131) 15 (120)

Germany 13 (326) 16 (60) 18 (90) 11 (90) 11 (86)

†Values are mean � SD and percentage (number), all such variables; one missing case for BMI; P-value: one-way ANOVA (continuous variables) and chi-square test

(prevalence). Definition of abbreviations is provided in the Data S2.
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expressed more in samples characterized by an increased number of

lymphocytes and of higher lymphocytes/monocytes ratio. This was even

more evident when looking at the T lymphocyte (CD3+CD45+) content,

which also showed a positive association with DNMT3B. DNMT1 was

also less expressed in samples characterized by an increased amount of

neutrophils, while DNMT3B showed an increasing trend with increasing

number of platelets. Of note, the relationship of DNMTs expression levels

in PBMCs with lymphocytes and monocytes blood counts mostly

resembles the higher expression of these genes in lymphocytes subtypes

with respect to monocytes, as revealed by the analysis of publicly

available microarray expression data (Su et al., 2004) (Fig. S3).

Similar results were obtained by analysing the whole population of

samples (RASIG together with GO and SGO samples) (Table S6).

Contribution of selected variables on age-related changes of

DNMT1 and DNMT3B mRNA expression in the RASIG

population

GLM and regression analyses were used to determine whether the age-

related changes observed for DNMT1 and DNMT3B genes are an intrinsic

feature of the aging process or whether one or more of the variables

shown to influence their expression can justify these changes.

As shown in Table 3, the changes of DNMT1 expression in age groups

seem to depend on a combined impact of multiple parameters rather

than on a specific one. However, the age-related variations of DNMT1

mRNA levels remained significant even when considering all the variables

that significantly affected DNMT1 expression (i.e. showing a significant

interaction with DNMT1 expression as detected by both KW and GLM

tests, see Table 2 and Tables S3–S5), indicating that the analysed

parameters cannot fully explain the DNMT1 transcript differences

observed between age groups. To confirm the result, several additional

models were run with progressive inclusion of variables categorized on

the basis of any significant association with DNMT1 expression, also

including only those identified by KW test (Tables S7A and B). Further

analysis using the log-transformed values of DNMT1 yielded comparable

data (Table S8A and B).

Similar results concerned the age-related variation of DNMT3B

transcript. Its linear decrease with age (Table 2 and Fig. 1) allowed the

investigation by regression analysis. Taking into account the gender

difference identified in Fig. 1, we performed a separate analysis for

gender. The analysis confirmed the linear decrease of DNMT3B mRNA

levels in females (but not males). The linear decrease of DNMT3B in the

females was not affected by the inclusion of other variables associated

with differences in DNMT3B mRNA levels between individuals (Table 4).

Identification of major variables affecting the measurement

of DNMT1 and DNMT3B expression

Decision tree analysis including all variables with at least one significant

effect on DNMT1 and DNMT3B (see Table 2 and Tables S3–S5) was

performed to identify the major factors affecting DNMTs expression. We

identified the recruitment centre and the lymphocyte-to-monocyte ratio

Table 2 Effect of age, gender, BMI on DNMT1 and DNMT3B expression in the RASIG population

Stat N

DNMT1 DNMT3B

Median (IQ) P (KW)† P (GLM)‡ Median (IQ) P (KW)† P (GLM)‡

Age group (years)

35–44 a 381 0.134 (0.102–0.171)c 0.003 0.049 0.022 (0.017–0.029)c,d 0.004 0.030

45–54 b 449 0.129 (0.095–0.159) 0.021 (0.016–0.029)

55–64 c 483 0.117 (0.088–0.165)a,d 0.020 (0.015–0.027)a

65–75 d 461 0.129 (0.095–0.171)c 0.020 (0.015–0.026)a

Centre

Finland a 80 0.125 (0.092–0.154)b < 0.001 < 0.001 0.024 (0.018–0.031)g < 0.001 < 0.001

Italy b 362 0.144 (0.113–0.183)a,c,d,g,h 0.020 (0.015–0.025)c

Austria c 267 0.113 (0.080–0.165)b,e 0.023 (0.015–0.035)b.g

Greece d 296 0.129 (0.095–0.171)b,g 0.021 (0.016–0.031)g

Poland e 202 0.139 (0.105–0.177)c,g 0.022 (0.016–0.028)g

The Netherlands f 0 – –

Belgium g 241 0.109 (0.077–0.139)b,d,e,h 0.017 (0.014–0.024)a,c,d,e

Germany h 326 0.129 (0.102–0.159)b,g 0.020 (0.016–0.027)

Gender

F a 940 0.129 (0.098–0.165) 0.056 0.031 0.021 (0.016–0.029)b 0.001 0.002

M b 834 0.125 (0.092–0.165) 0.020 (0.015–0.027)a

BMI classes

< 25 a 810 0.125 (0.095–0.165) 0.047 0.377 0.020 (0.015–0.028) 0.078 0.019

25 to < 30 b 662 0.125 (0.092–0.165) 0.021 (0.016–0.027)

≥ 30 c 301 0.139 (0.102–0.171) 0.022 (0.016–0.028)

†KW test: nonparametric comparison by the Kruskal–Wallis test of DNMT1 and DNMT3B mRNAs levels (data for two group comparison are analysed with the Mann–

Whitney U-test); data are reported as median and interquartile range (IQ). Pairwise comparisons are referred to the KW test and adjusted for multiple comparisons

(comparisons with P < 0.05 are marked by the associated superscripts).

‡GLM: comparison by generalized linear models of DNMT1 (gamma distribution with log-link function model) and DNMT3B (linear model with log-transformed values and

identity link function) mRNAs levels. For the investigation of age-group effects, the model included the effects of gender and recruitment centre as factors. All other GLM

models included the effects of gender, recruitment centre and age (continuous variable) as covariate (only P values for the selected variables are shown). Definition of

abbreviations is provided in the Data S2.

DNMT1 and DNMT3B expression in aging, F. Ciccarone et al.758

ª 2016 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.



as being the most important factors that affect both DNMT1 (Fig. S4)

and DNMT3B (Fig. S5). Minor subgroups were identified on the basis of

age, WBC and CD3+CD45+ cell data.

Differences in DNMT1 mRNA expression between GO, SGO

and RASIG

To investigate the possible influence of genetic advantage expected for

GO samples, the analysis of DNMT1 and DNMT3B expression was

performed comparing samples with an age between 54 and 75 years as

GO and SGO were well represented in this age interval. The stratification

by 10-year age groups of subjects aged > 54 years led to a similar

division of GO, SGO and RASIG across the age groups, thus reducing

potential bias due to unequal divisions. As shown in Fig. 2A, the

expression of DNMT1 was significantly higher in RASIG compared to GO

and SGO, while no difference was observed between GO and SGO. The

comparison of DNMT1 expression between age-stratified GO, SGO and

RASIG samples was performed according to gender and recruitment

centre. Data show that the higher level of DNMT1 mRNA in RASIG vs.

GO and SGO seemed to be a common feature, although the statistical

significance was reached in some age/centre subgroups, likely due to

reduced sample size (Table S9). In contrast, the expression levels of

Fig. 1 Age-related changes of DNMT1 and DNMT3B mRNA levels with age in females and males from RASIG population. The picture shows a graphical representation of

DNMT1 and DNMT3B mRNA as log-transformed data vs. age in the RASIG sample. (A1) Dot plot of log-transformed DNMT3B data vs. age in RASIG females; (A2) dot plot of

log-transformed DNMT3B data vs. age in RASIG males; (A3) dot plot of log-transformed DNMT3B data vs. age in all RASIG samples; (B1) dot plot of log-transformed DNMT1

data vs. age in RASIG females; (B2) dot plot of log-transformed DNMT1 data vs. age in RASIG males; (B3) dot plot of log-transformed DNMT1 data vs. age in all RASIG

samples. Correlation coefficients (Pearson R for log-transformed data and Spearman’s rho for untransformed data) are noted below each graph. Significance and 95%

confidence interval of correlation coefficients (within brackets) are estimated by bias-corrected and accelerated (BCa) bootstrap with stratified sampling (1000 samples

stratified for country, and also for gender when all data are used). R-square and significance of the unique relevant quadratic regression is noted above panel B3. Graph and

regression coefficients are also reported considering data of DNMT1 in the age range from 35 to 64 years in RASIG female (panel C1), in RASIG males (panel C2) as well as in

all RASIG population (panel C3).

DNMT1 and DNMT3B expression in aging, F. Ciccarone et al. 759

ª 2016 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.



DNMT3B were very similar in the three classes of samples (Fig. 2B and

Table S10).

With the aim to trace potential causes for the differences in DNMT1

mRNA expression between GO, SGO and RASIG, the contribution of

selected variables was assessed by GLM analysis (Table 5). Results show

that the differences between the three classes of samples remained

highly significant even when several variables that associated with

interindividual variations in DNMT1 mRNA expression were taken into

account. Additional models that confirmed these results were also run

including all categorized variables associated with DNMT1 in Tables S3–

S5 (Table S11A and 11B).

The effect of batch correction strategies on the association of

DNMT1 and DNMT3B mRNA expression with age and on

differences in DNMT1 mRNA expression between GO, SGO

and RASIG

Our experimental design has been conceived to minimize the impact of

batch effects by the adoption of a validated housekeeping gene for

normalization of expression data in aging (Zampieri et al., 2010) as well

as the use of a calibrator sample to reduce inter-run variation. Clearly,

the presence of additional batch effects could not be completely ruled

out though. In an attempt to address this problem, the age-related

changes in RASIG and the differences between GO, SGO and RASIG of

DNMTs expression were tested against diverse procedures of batch

effects adjustment by the application of a dedicated software. The

following strategies were adopted: (i) simple correction of batch effects;

(ii) correction attempting to retain differences between groups (GO, SGO

and RASIG), age and gender; (iii) group-, age- and gender-sensitive

correction combined with filtering for eventual outliers due to overcor-

rection. As shown in the Fig. S6, the application of the correction

procedures gradually normalized the distribution of data of both DNMTs.

Concerning DNMT1, correction procedures uncovered a weak albeit

significant linear decline with age (Fig. S7). The stratification of data for

age and gender revealed that adjustment for batches mainly affected the

upregulation of DNMT1 in the last age class obtained with unadjusted

data, while a decreasing trend characterized both uncorrected and

corrected data in age groups up to 64 years (Fig. S8). Consistently, a

significant negative linear correlation of DNMT1 expression with age was

Table 3 Influence of selected factors and covariates on age-related changes of

DNMT1 expression†

Variables

Type III

Wald chi-square df Sig.

Age groups 8.760 3 0.033

Gender 0.826 1 0.363

Centre 53.167 6 < 0.001

White bread consumption 6.877 2 0.032

Monocytes 0.123 1 0.726

Ratio lymphocyte to monocyte 19.989 1 < 0.001

Neutrophils 0.240 1 0.624

Model: age groups (o), gender (n), centre (n), white bread consumption (s),

monocytes (s), lymphocytes/monocytes (s), neutrophils (s), (o = ordinal variable:

n = nominal variable; s = scale variable).

†Analysis was performed by GLM using gamma distribution with log-link

function and nontransformed data of the dependent variable: DNMT1

mRNA (s).

Table 4 Regression analysis of DNMT3B expression in females and males from RASIG†

Gender Variables

Coefficients Bootstrap for coefficients

B � SE Beta Bias Sig 95% CI

Model 1 F Age (years) �0.004 � 0.001 �0.086 0.000 0.008 �0.007; �0.001

M Age (years) �0.003 � 0.002 �0.059 0.000 0.077 �0.006; 0.000

Model 2 F Age (years) �0.004 � 0.001 �0.084 0.000 0.009 �0.007; �0.001

Lymphocytes/monocytes 0.293 � 0.100 0.087 �0.004 0.005 0.083; 0.466

M Age (years) �0.002 � 0.002 �0.042 0.000 0.310 �0.005; 0.001

Lymphocytes/monocytes 0.190 � 0.121 0.056 0.001 0.087 �0.035; 0.408

Model 3 F Age (years) �0.006 � 0.002 �0.128 0.000 0.001 �0.009; �0.002

Lymphocytes/monocytes 0.271 � 0.131 0.079 0.011 0.021 0.041; 0.525

BMI 0.481 � 0.111 0.167 �0.007 0.001 0.280; 0.671

HDL 0.148 � 0.073 0.075 �0.003 0.047 0.019; 0.278

Monocytes �0.045 � 0.036 �0.048 �0.001 0.068 �0.102; 0.006

MHC �0.140 � 0.361 �0.013 �0.176 0.688 �1.417; 0.238

Platelets �0.065 � 0.052 �0.044 0.013 0.385 �0.173; 0.133

HGB �0.062 � 0.234 �0.009 0.018 0.801 �0.527; 0.445

M Age (years) �0.002 � 0.002 �0.038 0.000 0.302 �0.005; 0.002

Lymphocytes/monocytes 0.223 � 0.152 0.062 0.007 0.145 �0.092; 0.524

BMI 0.206 � 0.163 0.052 0.005 0.161 �0.077; 0.507

HDL 0.038 � 0.088 0.018 0.001 0.690 �0.127; 0.222

Monocytes �0.015 � 0.048 �0.013 �0.001 0.685 �0.083; 0.065

MHC �0.128 � 0.190 �0.025 �0.250 0.359 �1.594; �0.026

Platelets 0.087 � 0.059 0.055 0.000 0.109 �0.037; 0.215

HGB �0.169 � 0.262 �0.024 0.021 0.482 �0.745; 0.407

†Regression analysis was performed by using log-transformed data of dependent and independent variables (with the exclusion of age). All data were included as continuous

variables. Bootstrap results are based on 1000 stratified (by recruitment centre) bootstrap samples. Definition of abbreviations is provided in the Data S2.
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found in the samples up to 64 years independently of correction for

batches (Fig. S9). The batch correction procedure had no relevant impact

on the differences between GO, SGO and RASIG groups even when

considering the major confounding factors in the analysis (Fig. S10). As

DNMT3B concerns, batch correction confirmed and strengthened the

decrement of expression with age (Figs S11 and S12).

Discussion

The mechanisms responsible for the coexistence of global hypomethy-

lation and hypermethylation of specific sequences in the aging genome

are still an open research field. In this context, the altered expression of

DNMTs has long been postulated to contribute to epigenetic instability in

aging. This possibility was mainly prompted by the fact that changes of

DNA methylation patterns and of DNMTs expression are well docu-

mented in aging-associated diseases such as cancer, autoimmune

diseases and Alzheimer’s disease.

The results of pioneering studies, carried out on cellular models of

aging, have shown a substantial change of DNMTs activity with

increasing age due to a combination of maintenance methylation deficit

and increased de novo methylation (Lopatina et al., 2002), events which

were then associated with reduced DNMT1 levels together with

increased DNMT3B, respectively (Casillas et al., 2003). In part, these

initial observations have been further supported by the results of in vivo

studies in humans and mice. In fact, the levels of DNMT1 expression

decrease with age in human T lymphocytes and this is associated with

hypomethylation of specific gene promoters (Zhang et al., 2002; Balada

et al., 2008; Li et al., 2010). By contrast, data on changes of DNMT3B

expression during aging are less concordant since, while its increase was

confirmed in the liver of aged humans (Xiao et al., 2008), a decrease

with age was observed in human T lymphocytes (Balada et al., 2008) as

well as in mouse skin (Qian & Xu, 2014). Collectively, these data indicate

that a transcriptional deregulation of DNMTs would probably accompany

the aging process. However, the available data on humans are derived

from a limited number of correlational studies generally carried out on

relatively small sample sizes.

In the present work, the possible relationship between aging and

expression of DNMT1 and DNMT3B has been tested in the context of a

large-scale population-based study thereby providing, for the first time,

a reference framework for factors that are associated with DNMTs

expression variation such as demographics, clinical laboratory param-

eters as well as dietary and health habits. Using PBMCs, one of the few

accessible tissues, we broadly assessed variation of DNMT1 and

DNMT3B transcript levels in more than two thousand individuals

Fig. 2 Levels of DNMT1 and DNMT3B mRNA in GO, SGO and RASIG. The picture shows a graphical representation of DNMT1 (A) and DNMT3B (B) mRNA level in PBMCs

from GO, SGO and RASIG from the whole MARK-AGE sample above 54 years. Analysis was performed in subjects above 54 years due to nonrepresentative numbers of GO

and SGO below this age. **P < 0.01 from RASIG by post hoc (LSD) of GLM analysis and by KW test performed within each country.

Table 5 Contribution of selected variables and covariates on group (GO, RASIG

and SGO) related changes of DNMT1 expression in PBMCs from population aged

> 54 years†

Tests of model effects

Source

Type III

Wald chi-square df Sig.

Group (GO, SGO, RASIG) 15.707 2 < 0.001

Recruitment centre 78.056 7 < 0.001

Gender 0.041 1 0.839

Age (years) 4.107 1 0.043

BMI 2.565 1 0.109

Serum glucose 0.079 1 0.778

Glycosylated haemoglobin A1C 0.015 1 0.903

Homocysteine 4.236 1 0.040

Neutrophils 1.372 1 0.241

Lymphocytes/monocytes 19.814 1 < 0.001

Monocytes 0.538 1 0.463

WBC 1.179 1 0.278

HCT 0.925 1 0.336

MCV 0.635 1 0.426

MCH 0.064 1 0.801

†Analysis was performed by GLM using gamma distribution with log-link function.

Dependent variable: DNMT1 mRNA. Model: group (n), recruitment centre (n),

gender (n), age (s), BMI (s), serum glucose (s), glycosylated haemoglobin A1C (s),

homocysteine (s), neutrophils (s), lymphocytes/monocytes (s), monocytes (s), WBC

(s), HCT (s), MCV (s), MCH (s); (n = nominal variable; s = scale variable). Definition

of abbreviations is provided in the Data S2.
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recruited across the European population covering the age range of

35–75 years.

Although no substantial correlation was observed between DNMT1

expression and age by linear regression analysis, a significant, but very

small variation of the expression of both transcripts, was found when

samples were stratified into 10-year age groups.

In agreement with previous reports (Zhang et al., 2002; Balada et al.,

2008; Li et al., 2010), the level of DNMT1 gradually dropped with aging.

However, this was observed up to 64 years, where it either appeared to

stabilize (batch corrected data) or to eventually raise again (uncorrected

data) afterwards. Anyway, the U-shaped pattern of the uncorrected

DNMT1 expression data with age in humans is also supported by

observations in a recent publication, where the same trend was observed

for the expression of DNMT1 as well as for the global methylation level

of the genome in mouse liver during aging (Armstrong et al., 2013).

Interestingly, the decrease with age of the methylation levels of

repetitive DNA sequences is not linear in humans either, but it mainly

occurs during ages 40–60 years (Jintaridth & Mutirangura, 2010).

Concerning DNMT3B, its transcript levels decreased with age in

agreement with previous observations in human T lymphocytes (Balada

et al., 2008). Looking at gender, the inverse correlation of DNMT3B

expression with age was significant in the female population.

Notably, the changes with age of both DNMTs within each

recruitment centre were not uniform. While this could be in part

attributed to the reduced sample size, a differential impact of environ-

mental variables on the relationship between expression of DNMTs and

age across different countries cannot be excluded. Significantly,

environmental variables have been described to have an impact on

genomic DNA methylation patterns as well as on DNMTs expression level

(see Zampieri et al., 2015 for review).

We next performed an analysis to examine the association of DNMTs

expression with a large set of variables including demographics, clinical

laboratory parameters, dietary and lifestyle habits.

Concerning demographic variables, an interaction with the expression

of DNMTs was found for gender and BMI in addition to age and country.

Gender differences in the expression of both DNMTs in PBMCs are in

line with data previously obtained in the liver where higher levels of both

DNMT1 and DNMT3B were observed in females (Xiao et al., 2008).

Furthermore, gender-related differences of DNA methylation patterns in

PBMCs have recently been described (Lam et al., 2012). However, our

data suggest that gender differences for DNMT1 are the consequences

of a different proportion in leucocytes subsets.

The positive association of DNMT3B expression with BMI is of great

interest. In fact, an association between BMI and epigenetic age

acceleration was recently observed, especially in liver (Horvath et al.,

2014). In this context, our results would suggest an interesting link

between obesity, altered DNMT3B expression and methylation defects

that predispose to disease. Consistently, enhanced DNMT3B expression

was proposed to contribute to deregulated adipose tissue macrophage

polarization, inflammation and insulin resistance in obesity (Yang et al.,

2014).

Surprisingly, no significant association between dietary habits and level

of DNMTs transcripts was found although increasing evidence indicates

DNA methylation is vulnerable to nutritional influences (Bacalini et al.,

2014). This was also the case of clinical chemistry parameters associated

with cardiovascular and diabetes risk. For some of them, association with

DNMTs expression was found to be indirect and partially explained by

other demographic factors including, but not exclusively, age.

The lack of association between smoking and level of DNMTs was

unexpected considering that cigarette smoking is one of the most

powerful environmental modifiers of the DNA methylation pattern

(Breitling et al., 2011; Lee & Pausova, 2013) and has been shown to

deregulate the expression of DNMTs in brain and lung (Satta et al.,

2008; Lin et al., 2010). This discrepancy could be explained by the fact

that this effect could be tissue-specific and does not concern the PBMCs.

In fact, a lack of statistical association was reported between smoking

and genomewide DNA methylation variation in PBMCs (Lam et al.,

2012) as well as between smoking and epigenetic age acceleration in

multiple tissues (Horvath et al., 2014).

Finally, the expression of DNMTs was influenced by the amount of

lymphocytes, monocytes and by a specific subset of T lymphocytes. This

points to the composition of PBMCs as a confounding factor that may

lead to differences in expression of DNMTs between individuals. Hence,

the study of the relationship between abnormal methylation machinery

and DNA methylation changes in blood cells should take into account

differences in leucocyte composition between individuals. In particular,

the lymphocyte-to-monocyte ratio emerged as the main variable

affecting DNMT1 and DNMT3B. These data also suggest that DNMTs

might be more expressed in lymphocytes than monocytes. Interestingly,

it seems to be the case according to the comparison between blood cell

types of DNMT1 and DNMT3B transcript levels obtained from published

microarray data.

After the identification of variables potentially involved in determining

variations in the expression of DNMTs in our population, we then sought

to determine the impact of these variables on the differences in the

expression of DNMTs between age groups. The results indicate that,

although all the critical variables were taken into account in the analysis,

the differences in the expression of both DNMT1 and DNMT3B between

the age groups are still significant (excluding DNMT3B in the male RASIG

population). This indicates that age affects the expression of DNMTs in

PBMCs as an almost independent variable with respect to all other

variables evaluated here. Nevertheless, factors such as geographical

origin of the samples and lymphocytes-to-monocytes ratio seemed to

have a greater influence on interindividual differences in DNMTs

expression with respect to age in PBMCs. On the other hand, the weak

association of DNMTs expression with age severely limits the possibility

of predicting age by measuring DNMTs transcripts in PBMCs in contrast

to that shown for the methylation status of specific genomic loci

(Horvath, 2013).

The relationship between DNMTs expression and aging was also

evaluated in the GO and SGO populations. GO represents a group of

individuals that is assumed to have genetic benefits for healthy aging

compared to the normal aging population (RASIG) and to their control of

environment and lifestyle (SGO). In this experimental setting, inherent

advantages of GO with respect to aging seem not to be related to

DNMTs expression. In fact, DNMT3B levels were equal between the three

groups while the expression of DNMT1 is even lower in GO with respect

to RASIG. Moreover, GO and SGO showed comparable expression of

DNMT1. This rules out the possibility that the differences in DNMT1

expression between GO and RASIG are due to genetics while it points to

the existence of environmental or lifestyle factors that distinguish GO

and SGO from RASIG. However, differences in expression of DNMT1

between GO, RASIG and SGO do not seem to depend on any of the

variables which we found to be associated with the variation of its

expression in the analysed population. This suggests that GO and SGO

share a similar environmental factor whose influence on the expression

of DNMT1 cannot be traced, at least in any of the parameters analysed

here. A speculative hypothesis could be that the point of contact

between GO and SGO is their microbiome (including bacteria, fungi and

viruses that colonize our organism). In fact, there is evidence that
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cohabitation leads to microbiota similarities between individuals (Song

et al., 2013) and that the centenarians have a very different microbiota

composition from the rest of the population (Biagi et al., 2010; Rampelli

et al., 2013). Notably, differences in intestinal microbiota between

individuals have recently been associated with differences in the pattern

of DNA methylation in the blood (Kumar et al., 2014).

Finally, given that the most significant age-related results of this paper

originated from very small effect sizes, we next sought to determine

whether the aging effect on DNMTs expression was robust to batch

effects. It is expected that batch effects would lead to increased

variability and decreased power to detect a real biological signal. In fact,

in many cases, batch effects increase data variability and can be

confused with an outcome of interest thus leading to misleading

biological conclusions. This claims the necessity to perform dedicated

adjustments especially in population studies that require large sample

sizes and have to be carried over a long time period, as in the case of this

study. However, the application of batch removal tools to our data,

which consisted of heterogeneous (for gender, group and country) small

batches, was likely to introduce additional problems. In fact, in the case

of study groups being nonevenly distributed across batches, algorithms

to remove batch effects may bias group differences, but also carry the

potential concern of removing intragroup biological heterogeneity. In

order to avoid the pitfall deriving from inappropriate batch correction,

diverse approaches have been applied. All adopted procedures con-

firmed the relationship between expression of DNMTs and age.

However, batch correction impacted both the pattern and the strength

of this association. The linear decline of DNMT3B with age was

confirmed and reinforced, as well as the differences in DNMT1

expression between GO, SGO and RASIG, although with a lower

statistical significance. Conversely, removal of batch effects confirmed

the decline of DNMT1 expression up to 65 years while blunted its

upregulation in the last age class obtained with unadjusted data, thus

disproving the U-shaped pattern. However, batch correction appeared to

introduce a possible bias as shown by the preferential impact on the

expression levels of DNMT1 in the 65–75 age class as well as by the

inversion of the mean values between male and females in the same age

class the for both DNMTs. This suggests that the results after correction

should be interpreted with caution.

Collectively, results from this study confirm in large-scale population

setting that aging has an impact on the expression of DNMTs.

Converging evidence is given for the linear decrease of DNMT3B

expression with age as well as for the DNMT1 up to 64 years. For higher

age, data on the trend of DNMT1were conflicting and a possible reading

could be that the decrease of DNMT1 at these ages is attenuated. These

data would form the basis for future investigations aimed at establishing

if these changes are causally linked to variation in DNA methylation

patters and participate to the mechanism of DNA methylation changes

during aging.

Experimental Procedures

Study population, recruitment, data and blood collection

MARK-AGE is a European-wide cross-sectional population study aimed

at the identification of biomarkers of aging (B€urkle et al., 2015; Capri

et al., 2015).

In the present work, the expression of DNMT1 and DNMT3B

transcripts was analysed in PBMCs samples from a total of 2453 donors

in the age range of 35–75 years recruited in eight different European

countries.

Details of the recruitment procedures and of the collection of

anthropometric, clinical and demographic data have been published

(Moreno-Villanueva et al., 2015a,b).

PBMCs isolation procedure has been described (Moreno-Villanueva

et al., 2015a). Briefly, PBMCs were isolated from EDTA-whole blood,

obtained by phlebotomy after overnight fasting, by discontinuous

density gradient centrifugation in Percoll and subsequently cryopre-

served and stored in liquid nitrogen.

Sampleswere then shipped from the various recruitment centres to the

MARK-AGE Biobank located at the University of Hohenheim, Stuttgart,

Germany. From theBiobank, coded sampleswere subsequently sent to the

Sapienza University of Rome on dry-ice where they were stored in liquid

nitrogen until analysis of the DNMT1 and DNMT3BmRNA levels.

RNA extraction and cDNA synthesis

Samples were thawed by incubation at 37°C, followed by drop wise

addition of RPMI containing 10% FCS to a final dilution of 1:20. Cells

were collected by centrifugation and processed for RNA extraction.

Isolation of total RNA was performed using RNeasy Mini Kit (Qiagen,

Hilden, Germany) according to the manufacturer’s instructions and

subjected to DNase I digestion using RNase-free DNase (Qiagen, Hilden,

Germany). RNA concentration, purity and integrity were evaluated as

previously described (Zampieri et al., 2010). Reverse transcription was

carried out using the SuperScript VILO cDNA Synthesis Kit (Invitrogen,

MA, USA) on equal amounts of total RNA (0.5 lg).

Real-time quantitative RT–PCR

The expression of DNMT1 and DNMT3B was determined by quantitative

PCR using the Taqman Gene Expression Assays (Applied Biosystems, CA,

USA) following the manufacturer’s protocol on the iCycler IQ detection

system (Bio-Rad, Hercules, CA, USA). The PCR efficiency for each gene

assay was tested using twofold serial dilutions (from 50 to 3.125 ng) of

cDNAs randomly chosen fromamong the samples. Each set of primers and

probe showed an efficiency of 90–100%. All calibration curves exhibited

correlation coefficients > 0.99. Assays were performed in triplicate with

cDNA equivalent to 30 ng of reverse transcribed RNA. Gene expression

analysiswas performedby the relative calibrator normalized quantification

method using the expression level of the b-glucuronidase gene (GUSB) as
reference (Zampieri et al., 2010). An inter-run calibration samplewas used

in all plates to correct for the technical variance between the different runs

and to compare results from different plates. The calibrator consisted of

cDNA prepared from HCT116 cells. The Taqman Gene Expression Assays

IDs for each set of primers and probe were as follows: Hs00154749_m1

(DNMT1), Hs00171876_m1 (DNMT3B), Hs99999908_m1 (GUSB). The

data obtained were uploaded to the MARK-AGE database (Moreno-

Villanueva et al., 2015b), established at the University of Konstanz

(Konstanz, Germany), where they were recorded, curated and merged

with the anthropometric, clinical and demographic data elements of

donors.

Statistical analysis

See supporting information.
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