262 research outputs found

    Fructo-oligosaccharides separation and purification by simulated moving bed chromatography

    Get PDF
    The interest on oligosaccharides such as fructo-oligosaccharides (FOS) has strongly increased in recent years for food and pharmaceutical applications, mainly due to their improved technological and functional properties. FOS can be produced by fermentative processes from sucrose, and can be found in mixture with other mono- and di-saccharides and salts, at the end of the process [1]. Unlike FOS, the small saccharides (SGF), namely fructose, glucose and sucrose in the mixture, are known to be cariogenic, caloric and do not present prebiotic activity. The purification of FOS from the other sugars can represent and important increment on the economic value of the final product, which can be further used in diabetic and dietetic food [2]. Different strategies have been developed for this purpose, including microbial treatment [3], ultra and nano-filtration, activated charcoal systems [4], or ion-exchange chromatography [5]. Ion exchange resins may be then used in batch or continuous chromatographic processes, as Simulated Moving Bed (SMB) chromatography, to purify sugars. A screening of different commercial resins was previously done in order to select the most suitable to separate the oligosaccharides [5]. The resin Diaion 535Ca showed an increased recovery yield and purity of FOS (92 and 90%, respectively). In the present work, the separation process was implemented in the SMB, using the selected resin, namely. Equilibrium adsorption isotherms were determined by the Retention Time Method (RTM), for each single sugar. The resin was afterwards packed in eight SMB columns, and tested in the pilot plant. Different operation parameters, including switching time, extra time, internal flow-rates and operating pump flow-rates for feed, raffinate, desorbent, eluent and recycling streams, were tested in the plant. The separation of fructose from glucose and FOS from the SGF was evaluated. Firstly, the separation of a binary sugar mixture of fructose/sucrose (~ 50/50%) was performed followed by the separation of FOS from a fermentative broth. Fructose was purified from 53 to 76% and sucrose from 47 to 77%. FOS and SGF were purified from 50 to 67%. The implementation of UV detectors between the SMB columns allowed following the sugar concentration profile online during the separation process. The accurate selection of the operating parameters was made using the concentration signal obtained and showed to be a crucial step for an improved separation

    Modelling the role of fires in the terrestrial carbon balance by incorporating SPITFIRE into the global vegetation model ORCHIDEE - Part 1: Simulating historical global burned area and fire regimes

    Get PDF
    Journal Article© 2014 Author(s). Fire is an important global ecological process that influences the distribution of biomes, with consequences for carbon, water, and energy budgets. Therefore it is impossible to appropriately model the history and future of the terrestrial ecosystems and the climate system without including fire. This study incorporates the process-based prognostic fire module SPITFIRE into the global vegetation model ORCHIDEE, which was then used to simulate burned area over the 20th century. Special attention was paid to the evaluation of other fire regime indicators such as seasonality, fire size and fire length, next to burned area. For 2001-2006, the simulated global spatial extent of fire agrees well with that given by satellite-derived burned area data sets (L3JRC, GLOBCARBON, GFED3.1), and 76-92% of the global burned area is simulated as collocated between the model and observation, depending on which data set is used for comparison. The simulated global mean annual burned area is 346 Mha yrg'1, which falls within the range of 287-384 Mha yrg'1 as given by the three observation data sets; and is close to the 344 Mha yrg'1 by the GFED3.1 data when crop fires are excluded. The simulated long-term trend and variation of burned area agree best with the observation data in regions where fire is mainly driven by climate variation, such as boreal Russia (1930-2009), along with Canada and US Alaska (1950-2009). At the global scale, the simulated decadal fire variation over the 20th century is only in moderate agreement with the historical reconstruction, possibly because of the uncertainties of past estimates, and because land-use change fires and fire suppression are not explicitly included in the model. Over the globe, the size of large fires (the 95th quantile fire size) is underestimated by the model for the regions of high fire frequency, compared with fire patch data as reconstructed from MODIS 500 m burned area data. Two case studies of fire size distribution in Canada and US Alaska, and southern Africa indicate that both number and size of large fires are underestimated, which could be related with short fire patch length and low daily fire size. Future efforts should be directed towards building consistent spatial observation data sets for key parameters of the model in order to constrain the model error at each key step of the fire modelling

    The status and challenge of global fire modelling

    Get PDF
    This is the final version of the article. Available from European Geosciences Union / Copernicus Publications via the DOI in this record.The discussion paper version of this article was published in Biogeosciences Discussions on 25 January 2016 and is in ORE at http://hdl.handle.net/10871/34451Biomass burning impacts vegetation dynamics, biogeochemical cycling, atmospheric chemistry, and climate, with sometimes deleterious socio-economic impacts. Under future climate projections it is often expected that the risk of wildfires will increase. Our ability to predict the magnitude and geographic pattern of future fire impacts rests on our ability to model fire regimes, using either well-founded empirical relationships or process-based models with good predictive skill. While a large variety of models exist today, it is still unclear which type of model or degree of complexity is required to model fire adequately at regional to global scales. This is the central question underpinning the creation of the Fire Model Intercomparison Project (FireMIP), an international initiative to compare and evaluate existing global fire models against benchmark data sets for present-day and historical conditions. In this paper we review how fires have been represented in fire-enabled dynamic global vegetation models (DGVMs) and give an overview of the current state of the art in fire-regime modelling. We indicate which challenges still remain in global fire modelling and stress the need for a comprehensive model evaluation and outline what lessons may be learned from FireMIP.Stijn Hantson and Almut Arneth acknowledge support by the EU FP7 projects BACCHUS (grant agreement no. 603445) and LUC4C (grant agreement no. 603542). This work was supported, in part, by the German Federal Ministry of Education and Research (BMBF), through the Helmholtz Association and its research programme ATMO, and the HGF Impulse and Networking fund. The MC-FIRE model development was supported by the global change research programmes of the Biological Resources Division of the US Geological Survey (CA 12681901,112-), the US Department of Energy (LWT-6212306509), the US Forest Service (PNW96–5I0 9 -2-CA), and funds from the Joint Fire Science Program. I. Colin Prentice is supported by the AXA Research Fund under the Chair Programme in Biosphere and Climate Impacts, part of the Imperial College initiative Grand Challenges in Ecosystems and the Environment. Fang Li was funded by the National Natural Science Foundation (grant agreement no. 41475099 and no. 2010CB951801). Jed O. Kaplan was supported by the European Research Council (COEVOLVE 313797). Sam S. Rabin was funded by the National Science Foundation Graduate Research Fellowship, as well as by the Carbon Mitigation Initiative. Allan Spessa acknowledges funding support provided by the Open University Research Investment Fellowship scheme. FireMIP is a non-funded community initiative and participation is open to all. For more information, contact Stijn Hantson ([email protected])

    The status and challenge of global fire modelling

    Get PDF
    This is the discussion paper version of the article. The final published version was published in Biogeosciences Vol. 13 (1), pp. 3359-3375 and is in ORE at http://hdl.handle.net/10871/22886Biomass burning impacts vegetation dynamics, biogeochemical cycling, atmospheric chemistry, and climate, with sometimes deleterious socio-economic impacts. Under future climate projections it is often expected that the risk of wildfires will increase. Our ability to predict the magnitude and geographic pattern of future fire impacts rests on our ability to model fire regimes, either using well-founded empirical relationships or process-based models with good predictive skill. A large variety of models exist today and it is still unclear which type of model or degree of complexity is required to model fire adequately at regional to global scales. This is the central question underpinning the creation of the Fire Model Intercomparison Project - FireMIP, an international project to compare and evaluate existing global fire models against benchmark data sets for present-day and historical conditions. In this paper we summarise the current state-of-the-art in fire regime modelling and model evaluation, and outline what lessons may be learned from FireMIP.Stijn Hantson and Almut Arneth acknowledge support by the EU FP7 projects BACCHUS (grant agreement no. 603445) and LUC4C (grant agreement no. 603542). This work was supported, in part, by the German Federal Ministry of Education and Research (BMBF), through the Helmholtz Association and its research programme ATMO, and the HGF Impulse and Networking fund. The MC-FIRE model development was supported by the global change research programmes of the Biological Resources Division of the US Geological Survey (CA 12681901,112-), the US Department of Energy (LWT6212306509), the US Forest Service (PNW96–5I0 9 -2-CA), and funds from the Joint Fire Science Program. I. Colin Prentice is supported by the AXA Research Fund under the Chair Programme in Biosphere and Climate Impacts, part of the Imperial College initiative Grand Challenges in Ecosystems and the Environment. Fang Li was funded by the National Natural Science Foundation (grant agreement no. 41475099 and no. 2010CB951801). Jed O. Kaplan was supported by the European Research Council (COEVOLVE 313797). Sam S. Rabin was funded by the National Science Foundation Graduate Research Fellowship, as well as by the Carbon Mitigation Initiative. Allan Spessa acknowledges funding support provided by the Open University Research Investment Fellowship scheme. FireMIP is a non-funded community initiative and participation is open to all

    TEM analysis of apatite surface layers observed on zinc based glass polyalkenoate cements

    Get PDF
    peer-reviewedGlass polyalkenoate cements (GPCs) are acid base cements formed by the reaction of an aqueous solution of polyalkenoic acid, usually polyacrylic acid (PAA) with an acid degradable aluminosilicate glass. The result of the reaction is cement consisting of reacted and unreacted glass particles embedded in a polysalt matrix. In addition to these conventional GPCs, aluminium free glass polyalkenoate cements based on zinc silicate glasses (Zn-GPCs) exhibit significant potential as bone cements for several reasons. Primarily, they are formulated without the inclusion of aluminium (Al) [1] in the glass phase and thus eliminate clinical complications arising from the release of the Al3+ ion from the cement in vivo. Such complications have, in the past, included aluminium induced encephalopathy [2-5] and defective mineralisation of cancellous bone [6]. Secondly, Zn-GPCs set without a significant evolution of heat, when compared with commercial bone cements such as Spineplex Âź (Stryker, Limerick, Ireland). Finally, these materials can be tailored to release clinically beneficial ions into surrounding tissues [7]. In addition to Zn, these cements have been synthesized to contain strontium (Sr) [8, 9]. Both Sr and Zn inhibit osteoclastic turnover and promote osteoblastic turnover, resulting in increased bone strength and decreased fracture risk [10-14].Acceptedpeer-reviewe

    Hypothermia and Fever After Organophosphorus Poisoning in Humans—A Prospective Case Series

    Get PDF
    There have been many animal studies on the effects of organophosphorus pesticide (OP) poisoning on thermoregulation with inconsistent results. There have been no prospective human studies. Our aim was to document the changes in body temperature with OP poisoning. A prospective study was conducted in a rural hospital in Polonnaruwa, Sri Lanka. We collected data on sequential patients with OP poisoning and analyzed 12 patients selected from 53 presentations who had overt signs and symptoms of OP poisoning and who had not received atropine prior to arrival. All patients subsequently received specific management with atropine and/or pralidoxime and general supportive care. Tympanic temperature, ambient temperature, heart rate, and clinical examination and interventions were recorded prospectively throughout their hospitalization. Initial hypothermia as low as 32°C was observed in untreated patients. Tympanic temperature increased over time from an early hypothermia (<35°C in 6/12 patients) to later fever (7/12 patients >38°C at some later point). While some of the late high temperatures occurred in the setting of marked tachycardia, it was also apparent that in some cases fever was not accompanied by tachycardia, making excessive atropine or severe infection an unlikely explanation for all the fevers. In humans, OP poisoning causes an initial hypothermia, and this is followed by a period of normal to high body temperature. Atropine and respiratory complications may contribute to fever but do not account for all cases
    • 

    corecore