388 research outputs found

    Positive energy balance is associated with accelerated muscle atrophy and increased erythrocyte glutathione turnover during 5 wk of bed rest

    Get PDF
    Background: Physical inactivity is often associated with positive energy balance and fat gain. Objective: We aimed to assess whether energy intake in excess of requirement activates systemic inflammation and antioxidant defenses and accelerates muscle atrophy induced by inactivity. Design: Nineteen healthy male volunteers were studied before and at the end of 5 wk of bed rest. Subjects were allowed to spontaneously adapt to decreased energy requirement (study A, n = 10) or were provided with an activity-matched diet (study B, n = 9). Groups with higher (HEB) or lower (LEB) energy balance were identified according to median values of inactivity-induced changes in fat mass (\u394FM, assessed by bioelectrical impedance analysis). Results: In pooled subjects (n = 19; median \u394FM: 1.4 kg), bed rest-mediated decreases in fat-free mass (bioelectrical impedance analysis) and vastus lateralis thickness (ultrasound imaging) were significantly greater (P < 0.03) in HEBAB (-3.8 \ub1 0.4kg and -0.32 \ub1 0.04 cm, respectively) than in LEBab (-2.3 \ub1 0.5 kg and -0.09 \ub1 0.04 cm, respectively) subjects. In study A (median \u394FM: 1.8 kg), bed rest-mediated increases in plasma leptin, C-reactive protein, and myeloperoxidase were greater (P < 0.04) in HEBA than in LEBA subjects. Bed rest-mediated changes of glutathione synthesis rate in eythrocytes (L-[3,3-2H2]cysteine incorporation) were greater (P = 0.03) in HEBA (from 70 \ub1 19 to 164 \ub1 29%/d) than in LEBA (from 103 \ub1 23 to 84 \ub1 27%/d) subjects. Conclusions: Positive energy balance during inactivity is associated with greater muscle atrophy and with activation of systemic inflammation and of antioxidant defenses. Optimizing caloric intake may be a useful strategy for mitigating muscle loss during period of chronic inactivity

    Sarcopenia parameters in active older adults - an eight-year longitudinal study

    Get PDF
    BACKGROUD: Sarcopenia is a common skeletal muscle syndrome that is common in older adults but can be mitigated by adequate and regular physical activity. The development and severity of sarcopenia is favored by several factors, the most influential of which are a sedentary lifestyle and physical inactivity. The aim of this observational longitudinal cohort study was to evaluate changes in sarcopenia parameters, based on the EWGSOP2 definition in a population of active older adults after eight years. It was hypothesized that selected active older adults would perform better on sarcopenia tests than the average population. METHODS: The 52 active older adults (22 men and 30 women, mean age: 68.4 ± 5.6 years at the time of their first evaluation) participated in the study at two time points eight-years apart. Three sarcopenia parameters were assessed at both time points: Muscle strength (handgrip test), skeletal muscle mass index, and physical performance (gait speed), these parameters were used to diagnose sarcop0enia according to the EWGSOP2 definition. Additional motor tests were also performed at follow-up measurements to assess participants' overall fitness. Participants self-reported physical activity and sedentary behavior using General Physical Activity Questionnaire at baseline and at follow-up measurements. RESULTS: In the first measurements we did not detect signs of sarcopenia in any individual, but after 8 years, we detected signs of sarcopenia in 7 participants. After eight years, we detected decline in ; muscle strength (-10.2%; p < .001), muscle mass index (-5.4%; p < .001), and physical performance measured with gait speed (-28.6%; p < .001). Similarly, self-reported physical activity and sedentary behavior declined, too (-25.0%; p = .030 and - 48.5%; p < .001, respectively). CONCLUSIONS: Despite expected lower scores on tests of sarcopenia parameters due to age-related decline, participants performed better on motor tests than reported in similar studies. Nevertheless, the prevalence of sarcopenia was consistent with most of the published literature. TRIAL REGISTRATION: The clinical trial protocol was registered on ClinicalTrials.gov, identifier: NCT04899531

    Physiological profile of world-class high altitude climbers

    Get PDF
    The functional characteristics of six world-class high-altitude mountaineers were assessed 2-12 mo after the last high-altitude climb. Each climber on one or more several occasions had reached altitudes of 8,500 m or above without supplementary O2. Static and dynamic lung volumes and right and left echocardiographic measurements were found to be within normal limits of sedentary controls (SC). Muscle fiber distribution was 70% type I, 22% type IIa, and 7% type IIb. Mean muscle fiber cross-sectional area was significantly smaller than that of SC (-15%) and of long-distance runners (LDR, -51%). The number of capillaries per unit cross-sectional area was significantly greater than that of SC (+40%). Total mitochondrial volume was not significantly different from that of SC, but its subsarcolemmal component was equal to that of LDR. Average maximal O2 consumption was 60 \ub1 6 ml\ub7kg-1\ub7min-1, which is between the values of SC and LDR. Average maximal anerobic power was 28 \ub1 2.5 W\ub7kg-1, which is equal to that of SC and 40% lower than that of competitive high jumpers. All subjects were characterized by resting hyperventilation both in normoxia and in moderate (inspired O2 partial pressure = 77 Torr) hypoxia resulting in higher oxyhemoglobin saturation levels in hypoxia. The ventilatory response to four tidal volumes of pure O2 was similar to that of SC. It is concluded that elite high-alitude climbers do not have physiological adaptations to high altitude that justify their unique performance

    The kinetics of lactate production and removal during whole-body exercise

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Based on a literature review, the current study aimed to construct mathematical models of lactate production and removal in both muscles and blood during steady state and at varying intensities during whole-body exercise. In order to experimentally test the models in dynamic situations, a cross-country skier performed laboratory tests while treadmill roller skiing, from where work rate, aerobic power and blood lactate concentration were measured. A two-compartment simulation model for blood lactate production and removal was constructed.</p> <p>Results</p> <p>The simulated and experimental data differed less than 0.5 mmol/L both during steady state and varying sub-maximal intensities. However, the simulation model for lactate removal after high exercise intensities seems to require further examination.</p> <p>Conclusions</p> <p>Overall, the simulation models of lactate production and removal provide useful insight into the parameters that affect blood lactate response, and specifically how blood lactate concentration during practical training and testing in dynamical situations should be interpreted.</p

    The Correlation between Running Economy and Maximal Oxygen Uptake: Cross-Sectional and Longitudinal Relationships in Highly Trained Distance Runners

    Get PDF
    A positive relationship between running economy and maximal oxygen uptake (V̇O2max) has been postulated in trained athletes, but previous evidence is equivocal and could have been confounded by statistical artefacts. Whether this relationship is preserved in response to running training (changes in running economy and V̇O2max) has yet to be explored. This study examined the relationships of (i) running economy and V̇O2max between runners, and (ii) the changes in running economy and V̇O2max that occur within runners in response to habitual training. 168 trained distance runners (males, n = 98, V̇O2max 73.0 ± 6.3 mLkg-1min-1; females, n = 70, V̇O2max 65.2 ± 5.9 mL kg-1min-1) performed a discontinuous submaximal running test to determine running economy (kcalkm-1). A continuous incre-mental treadmill running test to volitional exhaustion was used to determine V̇O2max 54 par-ticipants (males, n = 27; females, n = 27) also completed at least one follow up assessment. Partial correlation analysis revealed small positive relationships between running economy and V̇O2max (males r = 0.26, females r = 0.25; P&lt;0.006), in addition to moderate positive re-lationships between the changes in running economy and V̇O2max in response to habitual training (r = 0.35; P&lt;0.001). In conclusion, the current investigation demonstrates that only a small to moderate relationship exists between running economy and V̇O2max in highly trained distance runners. With&gt;85 % of the variance in these parameters unexplained by this relationship, these findings reaffirm that running economy and V̇O2max are primarily determined independently

    Metabolic power in hurling with respect to position and halves of match-play.

    Get PDF
    The current investigation compared the metabolic power and energetic characteristics in team sports with respect to positional lines and halves of match-play. Global positioning system (GPS) technology data were collected from 22 elite competitive hurling matches over a 3-season period. A total of 250 complete match-files were recorded with players split into positional groups of full-back; half-back; midfield; half-forward; full-forward. Raw GPS data were exported into a customized spreadsheet that provided estimations of metabolic power and speed variables across match-play events (average metabolic power [Pmet], high metabolic load distance [HMLD], total distance, relative distance, high-speed distance, maximal speed, accelerations, and deceleration). Pmet, HMLD, total, relative and high-speed distance were 8.9 ± 1.6 W·kg-1, 1457 ± 349 m, 7506 ± 1364 m, 107 ± 20 m·min-1 and 1169 ± 260 m respectively. Half-backs, midfielders and half-forwards outperformed full-backs (Effect Size [ES] = 1.03, 1.22 and 2.07 respectively), and full-forwards in Pmet (Effect Size [ES] = 1.70, 2.07 and 1.28 respectively), and HMLD (full-backs: ES = -1.23, -1.37 and -0.84 respectively, and full-forwards: ES = -1.77, -2.00 and -1.38 respectively). Half-backs (ES = -0.60), midfielders (ES = -0.81), and half-forwards (ES = -0.74) experienced a second-half temporal decrement in HMLD. The current investigation demonstrates that metabolic power may increase our understanding of the match-play demands placed on elite hurling players. Coaches may utilize these findings to construct training drills that replicate match-play demands

    Analysis of a sprint ski race and associated laboratory determinants of world-class performance

    Get PDF
    This investigation was designed to analyze the time-trial (STT) in an international cross-country skiing sprint skating competition for (1) overall STT performance and relative contributions of time spent in different sections of terrain, (2) work rate and kinematics on uphill terrain, and (3) relationships to physiological and kinematic parameters while treadmill roller ski skating. Total time and times in nine different sections of terrain by 12 world-class male sprint skiers were determined, along with work rate and kinematics for one specific uphill section. In addition, peak oxygen uptake (VO2peak), gross efficiency (GE), peak speed (Vpeak), and kinematics in skating were measured. Times on the last two uphill and two final flat sections were correlated to overall STT performance (r = ~−0.80, P < 0.001). For the selected uphill section, speed was correlated to cycle length (r = −0.75, P < 0.01) and the estimated work rate was approximately 160% of peak aerobic power. VO2peak, GE, Vpeak, and peak cycle length were all correlated to STT performance (r = ~−0.85, P < 0.001). More specifically, VO2peak and GE were correlated to the last two uphill and two final flat section times, whereas Vpeak and peak cycle length were correlated to times in all uphill, flat, and curved sections except for the initial section (r = ~−0.80, P < 0.01). Performances on uphill and flat terrain in the latter part were the most significant determinants of overall STT performance. Peak oxygen uptake, efficiency, peak speed, and peak cycle length were strongly correlated to overall STT performance, as well as to performance in different sections of the race

    Characteristics of fast voluntary and electrically evoked isometric knee extensions during 56 days of bed rest with and without exercise countermeasure

    Get PDF
    The contractile characteristics of fast voluntary and electrically evoked unilateral isometric knee extensions were followed in 16 healthy men during 56 days of horizontal bed rest and assessed at bed rest days 4, 7, 10, 17, 24, 38 and 56. Subjects were randomized to either an inactive control group (Ctrl, n = 8) or a resistive vibration exercise countermeasure group (RVE, n = 8). No changes were observed in neural activation, indicated by the amplitude of the surface electromyogram, or the initial rate of voluntary torque development in either group during bed rest. In contrast, for Ctrl, the force oscillation amplitude at 10 Hz stimulation increased by 48% (P < 0.01), the time to reach peak torque at 300 Hz stimulation decreased by 7% (P < 0.01), and the half relaxation time at 150 Hz stimulation tended to be slightly reduced by 3% (P = 0.056) after 56 days of bed rest. No changes were observed for RVE. Torque production at 10 Hz stimulation relative to maximal (150 Hz) stimulation was increased after bed rest for both Ctrl (15%; P < 0.05) and RVE (41%; P < 0.05). In conclusion, bed rest without exercise countermeasure resulted in intrinsic speed properties of a faster knee extensor group, which may have partly contributed to the preserved ability to perform fast voluntary contractions. The changes in intrinsic contractile properties were prevented by resistive vibration exercise, and voluntary motor performance remained unaltered for RVE subjects as well

    Maximal aerobic and anaerobic power generation in large crocodiles versus mammals: implications for dinosaur gigantothermy

    Get PDF
    Inertial homeothermy, the maintenance of a relatively constant body temperature that occurs simply because of large size, is often applied to large dinosaurs. Moreover, biophysical modelling and actual measurements show that large crocodiles can behaviourally achieve body temperatures above 30°C. Therefore it is possible that some dinosaurs could achieve high and stable body temperatures without the high energy cost of typical endotherms. However it is not known whether an ectothermic dinosaur could produce the equivalent amount of muscular power as an endothermic one. To address this question, this study analyses maximal power output from measured aerobic and anaerobic metabolism in burst exercising estuarine crocodiles, Crocodylus porosus, weighing up to 200 kg. These results are compared with similar data from endothermic mammals. A 1 kg crocodile at 30°C produces about 16 watts from aerobic and anaerobic energy sources during the first 10% of exhaustive activity, which is 57% of that expected for a similarly sized mammal. A 200 kg crocodile produces about 400 watts, or only 14% of that for a mammal. Phosphocreatine is a minor energy source, used only in the first seconds of exercise and of similar concentrations in reptiles and mammals. Ectothermic crocodiles lack not only the absolute power for exercise, but also the endurance, that are evident in endothermic mammals. Despite the ability to achieve high and fairly constant body temperatures, therefore, large, ectothermic, crocodile-like dinosaurs would have been competitively inferior to endothermic, mammal-like dinosaurs with high aerobic power. Endothermy in dinosaurs is likely to explain their dominance over mammals in terrestrial ecosystems throughout the Mesozoic.Roger S. Seymou
    corecore